Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tách:
\(\frac{\left(t-x\right)\left(t-y\right)}{\left(t-a\right)\left(t-b\right)\left(t-c\right)}=\frac{A}{t-a}+\frac{B}{t-b}+\frac{C}{t-c}\left(1\right)\)
khi đó:
\(\left(t-x\right)\left(t-y\right)=A\left(t-b\right)\left(t-c\right)+B\left(t-c\right)\left(t-a\right)+C\left(t-a\right)\left(t-b\right)\)
Cho t=a; t=b; t=c
=> \(A=\frac{\left(a-x\right)\left(a-y\right)}{\left(a-b\right)\left(a-c\right)};B=\frac{\left(b-x\right)\left(b-y\right)}{\left(b-c\right)\left(b-a\right)};C=\frac{\left(c-x\right)\left(c-y\right)}{\left(c-a\right)\left(c-b\right)}\)
trong đẳng thức (1) ta cho t=0 ta được \(P=\frac{xy}{abc}\)