K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Đáp án C

Hoành độ giao điểm của  d 1  và  d 2  là nghiệm phương trình:

2x + 1 = x -1 nên x = -2

Với x = -2 thì y = 2. (-2) + 1 = -3

Vậy 2 đường thẳng  d 1  và d2 cắt nhau tại A(-2; -3).

Để ba đường thẳng đã cho đồng quy thì điểm A(-2; -3) thuộc đồ thị hàm số y = (m + 1)x – 2

Suy ra: -3 = (m + 1).(-2) - 2

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

10 tháng 8 2021

a, để (d2)//(d3)

\(< =>\left\{{}\begin{matrix}m^2+1=2\\m\ne1\end{matrix}\right.\)\(< =>m=-1\)

b, pt hoành độ giao điểm (d1)(d2)

\(x+2=2x+1< =>x=1=>y=3\)

\(pt\) hoành độ (d2)(d3)

\(2x+1=\left(m^2+1\right)x+m< =>2+1=\left(m^2+1\right)2+m\)

\(=>m=0,5\)

22 tháng 11 2015

a)  x =-2  d' => y =2(-2) -1 =-5 => M(-2;-5)

 d cắt d' tại M =>k khác 2 và  M thuộc (d) => k.(-2) -4 =-5 => -2k = -1 => k =1/2 (TM)

b) + Phương trình hoành độ giao điểm của d1 và d2 là: 

 3x =x+2 => x =1

 với x =1 (d1) => y =3 => d1 cắt d2 tại N(1;3)

Để 3 đường thẳng đồng quy thì d3 qua N => (m-3).1 +2m +1 =3 => m -3 +2m +1 =3 => 3m =5 => m =5/3

Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.1. Tìm m để d2 đi qua điểm E(1 ; 3).2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.3. Tìm m để ba đường thẳng trên đồng quy.4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớnnhất.5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích tam giác OAB theo hệ...
Đọc tiếp

Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.
1. Tìm m để d2 đi qua điểm E(1 ; 3).
2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.
3. Tìm m để ba đường thẳng trên đồng quy.
4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớn
nhất.
5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích tam giác OAB theo hệ thức
lượng.
6. Lập phương trình đường thẳng d đi qua điểm M(3 ; 8) và song song với d3, cắt hai trục tọa độ tại C và
D. Tính độ dài đường cao của tam giác COD, từ đó suy ra khoảng cách từ điểm M đến d3.
7. Lập phương trình đường thẳng d’ qua M và vuông góc với d3. Tìm hình chiếu N của M trên d3, từ đó
tính khoảng cách từ M đến d3

1

1:Thay x=1 và y=3 vào (d2), ta được:

\(m-2m+3=3\)

hay m=0

3 tháng 4 2019

* Trước hết tìm giao điểm của hai đường thẳng ( d 1 ) và ( d 2 ).

- Tìm hoành độ của giao điểm:

2/5x + 1/2 = 3/5x - 5/2 ⇔ 1/5x = 6/2 ⇔ x = 15.

- Tìm tung độ giao điểm:

y = 2/5.15 + 1/2 = 6,5.

*Tìm k (bằng cách thay tọa độ của giao điểm vào phương trình ( d 3 ).

6,5 = k.15 + 3,5 ⇔ 15k = 3 ⇔ k = 0,2.

Trả lời: Khi k = 0,2 thì ba đường thẳng đồng quy tại điểm (15; 6,5).

23 tháng 8 2021

\(\left(d_1\right):y=-x+1\)

\(\left(d_2\right):y=x-1\)

\(\left(d_3\right):y=\dfrac{k+1}{1-k}x+\dfrac{k+1}{k-1}\)

a) Để (d1) và (d3) vuông góc với nhau:

\(\Leftrightarrow\left(-1\right)\left(\dfrac{k+1}{1-k}\right)=-1\)\(\Leftrightarrow k=0\)(thỏa)

Vậy k=0

b)Giao điểm của (d1) và (d2) là nghiệm của hệ \(\left\{{}\begin{matrix}y=-x+1\\y=x-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)

Để (d1);(d2);(d3) đồng quy\(\Leftrightarrow\) (d3) đi qua điểm (1;0)

\(\Rightarrow0=\dfrac{k+1}{1-k}.1+\dfrac{k+1}{k-1}\)\(\Leftrightarrow0=0\)(lđ)

Vậy với mọi k thì (d1);d2);(d3) luôn cắt nhau tại một điểm

c)Gỉa sử \(M\left(x_0;y_0\right)\) là điểm cố định mà (d3) luôn đi qua

Khi đó \(\left(k+1\right)x_0+\left(k-1\right)y_0=k+1\) luôn đúng với mọi k

\(\Leftrightarrow k\left(x_0+y_0-1\right)+x_0-y_0-1=0\) luôn đúng với mọi k

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\x_0-y_0-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=1\end{matrix}\right.\)

Vậy \(M\left(2;1\right)\) là điểm cố định mà (d3) luôn đi qua.