Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
B = 6 + 9 + m + 12 + n
Do 6 chia hết cho 3; 9 chia hết cho 3; 12 chia hết cho 3
Nên B chia hết cho 3 khi và chỉ khi (m + n) chia hết cho 3.
Vậy để B chia hết cho 3 thì (m + n) phải chia hết cho 3 với m, n là các số tự nhiên.
1251chia hết cho 3 ,chia hết cho 9
5316 chia hết cho 3,không chia hết cho9
suy ra 1251+5316 chia hết cho3 không chia hết cho 9
a ) 1251+5316=6567 vi tong cua cso 6567=24 nen chia het cho 3 va ko chia he cho 9
b ) 5436 - 1324= 4112 vi tong cua so 4112 = 8 nen so do ko chia het cho 3 va cho 9
c ) 1 2 * 3 * 4* 5 *6 +27=747 vi tong cua so 747 = 18 nen so do chia het cho ca 3 va 7
a) a=9 ; b=3 ; m=9 ; n=3. a chia hết cho m thì bằng: 9:9=1 ; b chia hết cho những thì bằng: 3:3=1.
a.b chia hết cho m.n thì bằng : 9.9 chia hết cho 3.3 = 9.9=81 chia hết cho 3.3=9.
Vậy là xong câu a. Bạn có thể tìm số khác nhưng phải làm sao cho số a chia hết cho số b. Còn m=a ; những=b
b) a chia hết cho b = 9 chia hết cho 3; a mũ m chia hết cho b mũ m = 9^9 chia hết cho 3^3. Vì 9 chia hết cho 3 mà.
Mà a=9 ; b=3 ; m=9. Các số này đều thuộc tập hợp N luôn.
Mình giải xong rồi đó. tick cho mình đi. Thank
1/abcd chia hết cho 101 thì cd = ab, abcd = abab
Mà:
ab - ab = ab - cd = 0 (chia hết cho 101)
Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)
2/n . (n+2) . (n+8)
n có 3 trường hợp:
TH1: n chia hết cho 3
Gọi tích đó là A.
A = n.(n+2).(n+8)
A = 3k.(3k+2).(3k+8)
=> A chia hết cho 3
TH2: n chia 3 dư 1
B = (3k+1).(3k+1+2).(3k+1+8)
B = (3k+1).(3k+3).(3k+9)
Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3
TH3: n chia 3 dư 2
TH này ko hợp lý, bạn nên xem lại đề
n . (n+4) . (2n+1)
bạn giải tương tự nhé
2n + 1 chia hết cho n-3
=> 2.(n-3) + 7 chia hết cho n-3
=> n - 3 thuộc Ư(7)
=> n-3 thuộc {-7;-1;1;7}
mà n thuộc N
=> n thuộc {2;4;10}
câu sau tương tự
A, 2n + 1 chia hết cho n-3
=> 2n-2+2+4 CHC N-3
= 2*(N-1)+6 CHC n-3
=>6 CHC n-3
=>n-3 = Ư(6)=(1,2,3,6)
=>N =4, 5, 6, 9
****!!!!!!!!!!!!!!!!!!!
1.
Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:
+ Ví dụ 1. Các số 7; 9 và 2.
Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2.
+ Ví dụ 2. Các số 13; 19 và 4.
Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4.
+ Ví dụ 3. Các số 33; 67 và 10.
Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10.
Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán.
Qua bài tập 6 này, ta rút ra nhận xét như sau:
Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng.
Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p.
2.
Vì (a+b)⋮ma+b ⋮ m nên ta có số tự nhiên k (k≠0)k≠0 thỏa mãn a + b = m.k (1)
Tương tự, vì a⋮ma ⋮ m nên ta cũng có số tự nhiên h(h≠0)h≠0 thỏa mãn a = m.h
Thay a = m. h vào (1) ta được: m.h + b = m.k
Suy ra b = m.k – m.h = m.(k – h) (tính chất phân phối của phép nhân với phép trừ).
Mà m⋮mm⋮m nên theo tính chất chia hết của một tích ta có m(k−h)⋮mmk-h ⋮ m
Vậy b⋮m.b ⋮ m.
Làm ơn giúp tui đi mà
năn nỉ đó
ai làm được bài này chứ
B = 6 + 9 + m + 12 + n
Do 6 chia hết cho 3; 9 chia hết cho 3; 12 chia hết cho 3
Nên B chia hết cho 3 khi và chỉ khi (m + n) chia hết cho 3.
Vậy để B chia hết cho 3 thì (m + n) phải chia hết cho 3 với m, n là các số tự nhiên.