K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

sai đề r bạn ơi

8 tháng 1 2017

Ta có : A = 2 + 22 + 2+... + 260

                   = (2 + 22 + 2+ 24) + ... + ( 257 + 258 + 259 +260)

                = 2 x ( 1 + 2 + 22 + 23) + ... + 257 x ( 1 + 2 + 22 + 23)

              = 2 x 15 + ... + 257 x 15

Vì 15 chia hết cho 3 =.> 2x15 chia hết cho 3;...; 257x15 chia hết cho 3

Vậy A chia hết cho 3

23 tháng 6 2017

a) B = ( 3 . 1 + 3 . 3 ) + ( 3\(^3\). 1 + 3\(^3\). 3 ) + ... + ( 3\(^{89}\). 1 + 3\(^{89}\). 3 )

    B = 3 . 4 + 3\(^3\). 4 + ... + 3\(^{89}\). 4

    B \(⋮\)4

Caau b,c làm tương tự ( câu c ghép 3 số lại với nhau )

23 tháng 6 2017

a,B=\(\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\))

B=\(12\times3^1+12\times3^2+...+12\times3^{88}\)

B=\(12\left(3^1+3^2+...+3^{88}\right)\)

Vì 12\(⋮\)4 nên B\(⋮\)4

15 tháng 1 2018

cố gắng làm nhanh cho mk nha!!!

mk cảm mơn nhiều 

9 tháng 8 2018

b, \(B=5+5^2+5^3+5^4+...+5^{11}+5^{12}\)

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)

\(B=30+5^2\left(5+5^2\right)+...+5^{10}\left(5+5^2\right)\)

\(B=30+5^2\cdot30+...+5^{10}\cdot30\)

\(B=\left(1+5^2+...+5^{10}\right)\cdot30\)\(⋮30\)

+) \(B=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{10}+5^{11}+5^{12}\right)\)

\(B=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{10}\left(1+5+5^2\right)\)

\(B=5\cdot31+5^4\cdot31+...+5^{10}\cdot31\)

\(B=\left(5+5^4+...+5^{10}\right)\cdot31\)\(⋮31\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

B=(3+3^2)+3^2(3+3^2)+...+3^98(3+3^2)

=12(1+3^2+...+3^98) chia hết cho 12