K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

Ta có: \(B=3+3^2+3^3+3^4+...+3^n\)

\(\Leftrightarrow3B=3^2+3^3+3^4+...+3^n+3^{n+1}\)

\(\Leftrightarrow3B-B=3^{n+1}-3\)

\(\Leftrightarrow2B=3^{n+1}-3\)

\(B=3280\) \(\Rightarrow2B=2.3280=6560\)

\(\Rightarrow3^{n+1}-3=6560\)

\(\Leftrightarrow3^{n+1}=6560+3=6563\)

\(\Leftrightarrow3^n.3=6563\)

\(\Leftrightarrow3^n=6563:3=\frac{6563}{3}\)

\(\Rightarrow n\notin N\)

Vậy: ko tìm được \(n\in N\)

20 tháng 7 2019

@Phạm anh quyên - Bạn xem đề bài có vấn đề gì ko, vì ko tìm được kết quả

a: \(A=2019\cdot2021=2020^2-1\)

\(B=2020^2\)

Do đó: A<B

10 tháng 10 2021
Fhzhizuu8zìtcùbìgìvìg⁸fu7fdjhtvfghhhujfghfhgkffztdhcvvgoh. Gtvguvvhhvhvzcgctv
11 tháng 11 2018

\(B=3+3^2+3^3+....+3^n.\)

\(\Rightarrow3B=3^2+3^3+...+3^n\)

\(\Rightarrow3B-B=3^n-3\)

\(\Rightarrow B=\frac{3^n-3}{2}\)

...... 

20 tháng 7 2021

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

20 tháng 7 2021

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101 

 

26 tháng 5 2018

Đáp án cần chọn là: C

24 tháng 12 2021

C bạn nhé n bằng  101

22 tháng 11 2018

Ta có:  A = 3 + 3 2 + 3 3 + . . . + 3 100

=>  3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101

=>  3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )

=>  2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100

2 A = 3 101 - 3 <=>  2 A + 3 = 3 101 , mà  2 A + 3 = 3 n

=> n = 101