Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình kiểm tra lại rồi ko sai nhưng bạn chỉ làm mỗi câu b thôi cũng đc
a,Đoạn thẳng chứ nhỉ??
*Công thức: \(\frac{n\left(n+1\right)}{2}\)
_Giải:
-Ta có: 2 điểm vẽ 1 đt
=> n điểm sẽ vẽ đc n-1 đt
-Lược bỏ những đt trùng nhau
=>Số đt có là: [n(n-1)]/2(đoạn thẳng)
b/
-Ta có: \(\hept{\begin{cases}5\widehat{B}+\widehat{A}=180^o\left(1\right)\\2\widehat{B}+\widehat{A}=90^o\left(2\right)\end{cases}}\)
-Lấy: (1) trừ (2) vế theo vế.
-Ta được: \(\hept{\begin{cases}3\widehat{B}=90^0\\\widehat{A}=90^0-2\widehat{B}\end{cases}\Leftrightarrow\hept{\begin{cases}\widehat{B}=30^0\\\widehat{A}=90^0-60^0=30^0\end{cases}}}\)
-Vậy: \(\widehat{A}=\widehat{B}=30^0\)
\(A=\frac{2}{11\cdot15}+\frac{2}{15\cdot19}+...+\frac{2}{51\cdot55}\)
\(A=\frac{2}{4}\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{55}\right)\)
\(A=\frac{1}{2}\cdot\frac{4}{55}\)
\(A=\frac{2}{55}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Gọi A = \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
=> A = \(\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)
A < \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A < \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
A < \(\frac{1}{2}-\frac{1}{100}\)
A < \(\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
=> A < \(\frac{1}{2}\)
<=> \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Ta có :
\(A=2016.2016.....2016=2016^{2015}\)
\(B=2017.2017.....2017\)
\(B=2017^{2016}\)
\(B=\left(2016+1\right)^{2016}\)
\(B=2016^{2016}+4032+1\)
\(\Rightarrow\)\(A+B=2016^{2015}+2016^{2016}+4032+1\)
\(\Rightarrow\)\(A+B=2016^{2015}.2017+4033\)
Lại có :
\(2016^{2015}\) luôn có chữ số tận cùng là \(6\)
\(\Rightarrow\)\(2016^{2015}.2017\) có chữ số tận cùng là \(2\)
\(\Rightarrow\)\(2016^{2015}.2017+4033\) có chữ số tận cùng là \(5\)
Do đó :
\(A+B\) chia hết cho \(5\)
Vậy \(A+B\) chia hết cho \(5\)
Chúc bạn học tốt ~
a)\(\left(3^2+1\right)B=\left(3^2+1\right)\cdot3\cdot\left(1-3^2+3^4-3^6+3^8-...-3^{2006}+3^{2008}\right).\)
\(10B=3\cdot\left(3^{2010}+1\right)\)
\(B=\frac{3\left(3^{2010}+1\right)}{10}\)
b) \(B=3\cdot\left(1-3^2+3^4\right)-3^7\cdot\left(1-3^2+3^4\right)+...+3^{2005}\left(1-3^2+3^4\right)\)
\(B=\left(1-3^2+3^4\right)\cdot\left(3-3^7+3^{13}-...+3^{2005}\right)=73\cdot\left(3-3^7+3^{13}-...+3^{2005}\right)\)
chia hết cho 73.
a)B=3-3^3+3^5-3^7+3^9-...+3^2009
3^2B=3^3-3^5+3^7-3^9+3^11-...+3^2011
9B+B=3^3-3^5+3^7-3^9+3^11-...+3^2011+3-3^3+3^5-3^7+3^9-...+3^2009
10B=3^2011+3
B=\(\frac{3^{2011}+3}{10}\)
b) B=3-3^3+3^5-3^7+3^9-...+3^2009
=(3-3^3+3^5)-(3^7-3^9+3^11)-....+(3^2005-3^2007+3^2009)
=(3-3^3+3^5)-[3^6(3-3^3+3^5)]-...+[3^2004(3-3^3+3^5)]
=(3-3^3+3^5)-3^6(3-3^3+3^5)-...+3^2004(3-3^3+3^5)
=219(1-3^6-...+3^2004) chia hết cho 73 vì 219 chia hết cho 73