K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

8 tháng 5 2019

\(A=\frac{27-12x}{x^2+9}\)

\(A=\frac{x^2-12x+36-x^2-9}{x^2+9}\)

\(A=\frac{\left(x-36\right)^2-\left(x^2+9\right)}{x^2+9}\)

\(A=\frac{\left(x-36\right)^2}{x^2+9}-\frac{x^2+9}{x^2+9}\)

\(A=\frac{\left(x-36\right)^2}{x^2+9}-1\ge-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=36\)

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé

7 tháng 6 2019

GTNN CỦA NÓ LÀ 0 ĐÓ BẠN!! MIK KO CHẮC NHƯNG ĐÓ LÀ ĐÁP ÁN CỦA MIK

3 tháng 7 2016

a.\(-\left(x^2-x-6\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{25}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy Max của biểu thức = \(\frac{25}{4}\Leftrightarrow x=\frac{1}{2}\)

Chọn mình nha mình sẽ làm típ 1 bài nữa

22 tháng 8 2016

a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4

 Dấu bằng xảy ra <=>x+1=0 <=>x=-1

22 tháng 8 2016

\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)

Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy giá trị nhỏ nhất của A là 4 khi x= -1