K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2022

\(a^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)

\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)

hay \(a=\sqrt{5}+1\)

\(T=\dfrac{\left(6+2\sqrt{5}\right)^2-4\cdot\left(16+8\sqrt{5}\right)+6+2\sqrt{5}+6\sqrt{5}+6+4}{6+2\sqrt{5}-2\sqrt{5}-2+12}\)

\(=\dfrac{56+24\sqrt{5}-50-24\sqrt{5}}{16}=\dfrac{6}{16}=\dfrac{3}{8}\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2018

Lời giải:

Bình phương biểu thức $a$ ta có:

\(a^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{4^2-(10+2\sqrt{5})}\)

\(=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5+1-2\sqrt{5}}\)

\(=8+2\sqrt{(\sqrt{5}-1)^2}=8+2(\sqrt{5}-1)=6+2\sqrt{5}\)

\(=[\pm (\sqrt{5}+1)]^2\)

Mà $a>0$ nên \(a=\sqrt{5}+1\)

Xét thêm 1 số \(1-\sqrt{5}\)

Ta thấy \(\left\{\begin{matrix} \sqrt{5}+1+1-\sqrt{5}=2\\ (\sqrt{5}+1)(1-\sqrt{5})=-4\end{matrix}\right.\) Do đó, theo định lý Viete đảo thì $a$ là nghiệm của pt \(x^2-2x-4=0\), tức là $a^2-2a-4=0$

Do đó:

\(T=\frac{a^2(a^2-2a-4)-2a(a^2-2a-4)+a^2-2a-4+8}{a^2-2a-4-10a+16}\)

\(=\frac{8}{-10a+16}=\frac{8}{-10(\sqrt{5}+1)+16}=\frac{8}{6-10\sqrt{5}}=\frac{4}{3-5\sqrt{5}}\)

28 tháng 5 2018

a= bao nhiêu có được bấm máy ko bạn

28 tháng 5 2018

k bạn ơi mik phải rút gọn a

5 tháng 7 2021

a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy...

b)Đk: \(x\ge-1\)

Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)

\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)

Vậy...

\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)

b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\) 

Vậy \(A_{min}=-\dfrac{1}{4}\)

5 tháng 7 2021

a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)

\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)

\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)

a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)

a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

b: Ta có: P=A:B

\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

22 tháng 9 2020

Đặt \(D=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(\Leftrightarrow D^2=8+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\)

\(\Leftrightarrow D^2=8+2\sqrt{16-10-2\sqrt{5}}\)

\(\Leftrightarrow D^2=8+2\sqrt{6-2\sqrt{5}}\)

\(\Leftrightarrow D^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(\Leftrightarrow D^2=8+2\left(\sqrt{5}-1\right)\)

\(\Leftrightarrow D^2=6+2\sqrt{5}\)

\(\Leftrightarrow D^2=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow D=\sqrt{5}+1\)

Thay vào ta tính được: \(A=\sqrt{5}+1-\sqrt{5}=1\)

Vậy A = 1