Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì N thuộc AB => AN+NB=AB=> NB=AB-AN=10-3=7(cm)
b) sửa đề nha: AM=6,5
ta có: AM>AN(6,5 >3) => N nằm giữa A và M=> AN+NM=AM => NM=AM-AN=6,5-3=3,5
ta có: M thuộc NB. NM=3,5 =1/2 7=1/2 NB => N là trung điểm NB
Cho a,m,n thuộc N* , hãy so sánh các tống sau :
A = 10 / a^m + 10 / a^n
Và
B = 11 / a ^ m + 9 / a ^ m
Ta có :
\(A=\frac{10}{a^m}+\frac{10}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)
\(B=\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^m}\)
Cả 2 vế đều có \(\frac{10}{a^m}+\frac{9}{a^n}\)nên ta so sánh \(\frac{1}{a^n}và\frac{1}{a^m}\)
TH1:
Nếu m>n => a^m>a^n => 1/a^m<1/a^n => B<A
TH2:
Nếu m<n =>a^m<a^n => 1/a^m>1/a^n => B>A
TH3:
Nếu m=n => a^m=a^n => 1.a^m=1/a^n => A=B
ta có A=\(\frac{10}{a^m}+\frac{10}{a^n}\)=\(\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)
B=\(\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{1}{a^m}+\frac{9}{a^n}\)
do \(\frac{10}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}\)nên để so sánh A và B ta đi so sánh \(\frac{1}{a^n}\)và \(\frac{1}{a^n}\)
xét 2 trường hợp
th1) m=n => \(\frac{1}{a^m}=\frac{1}{a^n}\)=>A=B
th2) m>n=>\(\frac{1}{a^m}\frac{1}{a^n}\)=>A<B