Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
a, ĐKXĐ : \(\hept{\begin{cases}2-x\ne0\\x^2-4\ne0\\2+x\ne0\end{cases}}\)hoặc \(2x^2-x^3\ne0\)hay \(x\ne\pm2;0\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(=\left(-\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)
\(=\frac{-x^2-2x-1-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}:\frac{x-3}{x\left(2-x\right)}\)
\(=\frac{-4x^2-6x+3}{\left(x-2\right)\left(x+2\right)}.\frac{-x\left(x-2\right)}{x-3}=\frac{\left(-4x^2-6x+3\right)\left(-x\right)}{\left(x+2\right)\left(x-3\right)}=\frac{4x^3+6x^2-3x}{\left(x+2\right)\left(x-3\right)}\)
b, Ta có : A > 0 hay \(\frac{4x^3+6x^2-3x}{\left(x+2\right)\left(x-3\right)}>0\)
\(\Leftrightarrow x\left(4x^2+6x-3\right)>0\)
\(\Leftrightarrow4x^2+6x-3>0\) bạn xem lại bài mình có chỗ nào sai ko nhé !!!
c, Ta có : \(\left|x-7\right|=4\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\end{cases}}}\)
TH1 : Thay x = 11 vào phân thức trên : ...
TH2 : Thay x = 3 vào phân thức trên : .... tự làm
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\) ĐKXD: \(x\ne\pm2,x\ne0,x\ne3\)
\(\Leftrightarrow\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{2-x}{2+x}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)
\(\Leftrightarrow\left(\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\right):\left(\frac{x-3}{x\left(2-x\right)}\right)\)
\(\Leftrightarrow\left(\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}\right)\cdot\left(\frac{x\left(2-x\right)}{x-3}\right)\)
\(\Leftrightarrow\frac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)
\(\Leftrightarrow\frac{4x^2}{x-3}\)
b, Để A>0 thì \(\frac{4x^2}{x-3}>0\)
\(\Rightarrow4x^2>0\)
\(\Rightarrow x>0\)
c, Ta có
\(\left|x-7\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\left(l\right)\end{cases}}}\)
Với \(x=11\Rightarrow\frac{4\cdot11^2}{11-3}=\frac{121}{2}\)
đk : x khác 2; x khác 3; x khác 1
\(a.A=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right)\cdot\frac{x^2-4x+3}{x^4+x^2+1}\)
\(A=\left(\frac{x^2}{\left(x-2\right)\left(x-3\right)}+\frac{x^2}{\left(x-1\right)\left(x-2\right)}\right)\cdot\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(A=\left(\frac{x^2\left(x-1\right)+x^2\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\right)\cdot\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(A=\frac{x^2\left(x-1+x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\cdot\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
\(A=\frac{x^2\left(2x-4\right)}{\left(x-2\right)\left(x^4+x^2+1\right)}=\frac{2x^2}{x^4+x^2+1}\)
\(b.\frac{1}{A}=\frac{x^4+x^2+1}{2x^2}=\frac{x^2}{2}+\frac{1}{2}+\frac{1}{2x^2}\) (x khác 0)
\(\frac{1}{A}=\frac{2x^2}{4}+\frac{1}{2}+\frac{1}{2x^2}\)
có 2x^2/4 và 1/2x^2 > 0 áp dụng bđt cô si ta có
\(\frac{2x^2}{4}+\frac{1}{2x^2}\ge2\sqrt{\frac{2x^2}{4}\cdot\frac{1}{2x^2}}=1\)
\(\Rightarrow\frac{1}{A}\ge\frac{3}{2}\)
\(\Rightarrow A\le\frac{2}{3}\)
DẤU = xảy ra khi 2x^2/4 = 1/2x^2 => 4x^4 = 4
=> x^4 = 1
=> x = 1 (loại) hoặc x = -1 (thỏa mãn)
vậy max a = 2/3 khi x = -1