K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

a) Để \(A\inℤ\)

\(\Rightarrow3⋮n-5\)

\(\Rightarrow n-5\inƯ\left(3\right)\)

\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)

Lập bảng xét các trường hợp : 

\(n-1\)\(1\)\(3\)\(-1\)\(-3\)
\(n\)\(2\)\(4\)\(0\)\(-2\)

Vậy \(n\in\left\{2;4;0\right\}\)

b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)\)

\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Lập bảng xét các trường hợp ta có: 

\(n-6\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(n\)\(7\)\(5\)\(9\)\(3\)\(11\)\(1\)\(21\)\(-9\)

Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)

5 tháng 5 2019

Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)

Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)

\(n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(2\)\(0\)\(6\)\(-4\)
7 tháng 8 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)

a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3 

<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=>\(2n\in\left\{-8;-4;-2;2\right\}\)

<=>\(n\in\left\{-4;-2;-1;1\right\}\)

b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\)  nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên

<=> 2n+3=-1 <=> n=-2

\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2

phần giá trị nhỏ nhất bạn làm nốt

18 tháng 4 2021

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4