K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

\(A=\frac{34}{7.13}+\frac{51}{13.22}+\frac{85}{22.37}+\frac{68}{37.49}\)

\(A=17.\left(\frac{2}{7.13}+\frac{3}{13.22}+\frac{5}{22.37}+\frac{4}{37.49}\right)\)

\(A=\frac{17}{3}.\left(\frac{6}{7.13}+\frac{9}{13.22}+\frac{15}{22.37}+\frac{12}{37.49}\right)\)

\(A=\frac{17}{3}.\left(\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{22}+\frac{1}{22}-\frac{1}{37}+\frac{1}{37}-\frac{1}{49}\right)\)

\(A=\frac{17}{3}.\left(\frac{1}{7}-\frac{1}{49}\right)\)

\(A=\frac{17}{3}.\frac{6}{49}\)

\(B=\frac{39}{7.16}+\frac{65}{16.31}+\frac{52}{31.43}+\frac{26}{43.49}\)

\(B=13.\left(\frac{3}{7.16}+\frac{5}{16.31}+\frac{4}{31.43}+\frac{2}{43.49}\right)\)

\(B=\frac{13}{3}.\left(\frac{9}{7.16}+\frac{15}{16.31}+\frac{12}{31.43}+\frac{4}{43.49}\right)\)

\(B=\frac{13}{3}.\left(\frac{1}{7}-\frac{1}{16}+\frac{1}{16}-\frac{1}{31}+\frac{1}{31}-\frac{1}{43}+\frac{1}{43}-\frac{1}{49}\right)\)

\(B=\frac{13}{3}.\left(\frac{1}{7}-\frac{1}{49}\right)=\frac{13}{3}.\frac{6}{49}\)

\(\frac{A}{B}=\frac{\frac{17}{3}.\frac{6}{49}}{\frac{13}{3}.\frac{6}{49}}=\frac{17}{13}\)

28 tháng 1 2018

đoạn cuối bạn kia làm sai một chỗ

8 tháng 1 2018

\(A=17\left(\frac{2}{7\cdot13}+\frac{3}{13\cdot22}+\frac{5}{22\cdot37}+\frac{4}{37\cdot49}\right)\)

\(=\frac{17}{3}\left(\frac{6}{7\cdot13}+\frac{9}{13\cdot22}+\frac{15}{22\cdot37}+\frac{12}{37\cdot49}\right)\)

\(=\frac{17}{3}\left(\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{22}+\frac{1}{22}-\frac{1}{37}+\frac{1}{37}-\frac{1}{49}\right)\)

\(=\frac{17}{3}\left(\frac{1}{7}-\frac{1}{49}\right)\)

\(B=13\left(\frac{3}{7\cdot16}+\frac{5}{16\cdot31}+\frac{4}{31\cdot43}+\frac{2}{43\cdot49}\right)\)

\(=\frac{13}{3}\left(\frac{9}{7\cdot16}+\frac{15}{16\cdot31}+\frac{12}{31\cdot43}+\frac{6}{43\cdot49}\right)\)  

\(=\frac{13}{3}\left(\frac{1}{7}-\frac{1}{16}+\frac{1}{16}-\frac{1}{31}+\frac{1}{31}-\frac{1}{43}+\frac{1}{43}-\frac{1}{49}\right)\)

\(=\frac{13}{3}\left(\frac{1}{7}-\frac{1}{49}\right)\) 

\(\Rightarrow\frac{A}{B}=\frac{\frac{17}{3}\left(\frac{1}{7}-\frac{1}{49}\right)}{\frac{13}{3}\left(\frac{1}{7}-\frac{1}{49}\right)}\)\(=\frac{\frac{17}{3}}{\frac{13}{3}}=\frac{17}{13}\)

10 tháng 4 2018

\(\frac{A}{B}=\frac{17}{13}\)

Chúc bạn học tốt !!!!

18 tháng 8 2016

các bạn giúp mình với

 

 4 đề cô Hòa đây nhé Hoàng https://olm.vn/thanhvien/1109157   . Mai thi rồi chúc thi tốt nhé my friend . Phải mang giải về nhé.  Đề 1 :  Đề trường Đăng Đạo năm 2013-2014Bài 1 : ( 1,5 điểm )a) Thực hiện phép tính :       \(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^.-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)b) Tính tỉ...
Đọc tiếp

 4 đề cô Hòa đây nhé Hoàng https://olm.vn/thanhvien/1109157   . Mai thi rồi chúc thi tốt nhé my friend . Phải mang giải về nhé. 

 Đề 1 :  Đề trường Đăng Đạo năm 2013-2014

Bài 1 : ( 1,5 điểm )

a) Thực hiện phép tính : 

      \(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^.-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

b) Tính tỉ số \(\frac{A}{B}\) biết \(A=\frac{34}{7.13}+\frac{51}{13.22}+\frac{85}{22.37}+\frac{68}{37.49};B=\frac{39}{7.16}+\frac{65}{16.31}+\frac{52}{31.43}+\frac{26}{43.49}\)

Bài 2: ( 2 điểm ) Tìm x biết 

a) \(\left(\frac{2}{3}\right)^{2x+3}=\frac{2187}{128}\)

b) \(\left(2x-5\right)^{2007}=\left(2x-5\right)^{2005}\)

c) \(|x-7|+2x+5=6\)

Bài 3 ( 2 điểm )

a) Cho a+b+c =1010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{201}\)Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

b) Cho x = by+cz ; y= ax+cz ; z=ax+by

Chứng minh rằng \(H=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

Bài 4 ( 1,5 điểm )

a) Số A được chia thành 3 số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\). Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A.

b) Tìm giá trị nhỏ nhất của \(A=|x-2006|=|2007-x|\) Khi x thay đổi

Bài 5 :

Cho tam giác cân ABC ( AB=AC ). Trên tia đối của tia  BC và CB lấy theo thứ tự các điểm D và E sao cho BD=CE.

a) Chứng minh tam giác ADE là tam giác cân

b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE.

c) Từ B và C kẻ BH và Ck theo thứ tự vuông góc với AD và AE. Chứng minh BH=CK.

d) Chứng minh ba đường thẳng AM,BH và CK gặp nhau tại 1 điểm >

e) Gọi 2 tia phân giác ngoài tại các đỉnh D và E của tam giác ADE là F. Chứng minh rằng F thuộc tia AM và khoảng cách từ F đến 2 cạnh của tam giác ADE bằng nhau 

0