Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+\frac{11^3}{30}-\frac{13^3}{42}+\frac{15^3}{56}-\frac{17^3}{72}+...+\frac{199^3}{9900}\)
\(=3^2.\left(1+\frac{1}{2}\right)-5^2.\left(\frac{1}{2}+\frac{1}{3}\right)+7^2.\left(\frac{1}{3}+\frac{1}{4}\right)-9^2.\left(\frac{1}{4}+\frac{1}{5}\right)+...+199^2.\left(\frac{1}{99}+\frac{1}{100}\right)\)
\(=3^2+\left(\frac{3^2}{2}-\frac{5^2}{2}\right)-\left(\frac{5^2}{3}-\frac{7^2}{3}\right)+\left(\frac{7^2}{4}-\frac{9^2}{4}\right)-\left(\frac{9^2}{5}-\frac{11^2}{5}\right)+...+\left(\frac{197^2}{99}-\frac{199^2}{99}\right)+\frac{199^2}{100}\)
\(=3^2-8+8-8+...+8+\frac{199^2}{100}=3^2+\frac{199^2}{100}< 3^2+\frac{199.200}{100}=9+398=407\)
\(\Rightarrow A< 407.2=814\)
Bài 1 chắc như này quá!
1/Gọi số xe trọng tại 4 tấn và 11 tấn lần lượt là x;y. (\(x;y\inℕ^∗\))
Theo đề bài,ta có: \(4x+11y=58\)
Do 58 và 4x đều chia hết cho 2.Nên 11y chia hết cho 2.Suy ra y chia hết cho 2 (do 11 và 2 nguyên tố cùng nhau)
Đặt y = 2k \(\left(k\inℕ^∗\right)\)suy ra
\(4x+22k=58\Leftrightarrow2x+11k=29\Leftrightarrow x=\frac{29-11k}{2}\)
Do x > 0 nên \(11k< 29\Leftrightarrow1\le k\le2\).Do k thuộc N* nên k = 1 hoặc k = 2
Dễ thấy k = 1 là 1 nghiệm. Khi đó \(x=\frac{29-11}{2}=9\) và y = 2
Với k = 2 thì \(x=\frac{29-11.2}{2}=\frac{7}{2}\) (loại,vì x không thuộc N*)
Vậy cần 9 xe 4 tấn và 2 xe 11 tấn.
t làm thử bài 3,bạn bạn tự check,sai thì thôi nhé! t cx ko rành nguyên lí Dirichlet cho lắm : (
Lời giải
Coi 5 số là 5 "thỏ";2 nhóm là 2 "lồng".Theo nguyên lí Dirichlet thì tồn tại 1 nhóm có 3 số trở lên.Thật vậy.Nếu không tồn tại nhóm nào quá 2 số thì hai nhóm sẽ chứa không quá 2 .2 = 4 số (trái với giả thiết).Tức là nhóm còn lại có chứa 2 số trở lại.
Ta giả sử rằng không có nhóm nào chứa \(\le1\) số.
Xét nhóm có 3 số: Theo nguyên lí Dirichlet,tồn tại \(\left[\frac{5}{3}\right]+1=1+1=2\) số mà hiệu của số lớn và số bé bằng hiệu giữa số lớn và số bé trong nhóm kia.Hiệu của chúng là những số trong khoảng: 1 - 4.Mà hai số này luôn thuộc 1 trong hai nhóm. Tức là tồn tại hiệu của 2 số trong một nhóm bằng một số trong nhóm đó.
Tương tự,giả sử có 1 nhóm chứa \(\le1\) số.Với nếu 1 nhóm có 0 số thì bài toán đúng. (hiển nhiên,do trong 5 số tự nhiên liên tiếp trên luôn tồn tại hai số mà hiệu chúng bằng một số trong năm số đó)
Nếu có 1 nhóm có 1 số thì nhóm kia cũng luôn tồn tại hai số có hiệu bằng một số trong nhóm đó(2) (chỗ này mình cx không chắc lắm,vì khó c/m lắm)
Từ (1) và (2) ta có đpcm.
Sử dụng khá nhiều kiến thức hằng đẳng thức lớp 8, lớp 7 bó tay
\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+...-\frac{197^3}{9702}+\frac{199^3}{9900}\)
\(\frac{A}{2}=\frac{3^3}{1.2}-\frac{5^3}{2.3}+\frac{7^3}{3.4}-\frac{9^3}{4.5}+...+\frac{199^3}{99.100}\)
\(\frac{A}{2}=3^3\left(1-\frac{1}{2}\right)-5^3\left(\frac{1}{2}-\frac{1}{3}\right)+7^3\left(\frac{1}{3}-\frac{1}{4}\right)-...+199^3\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{A}{2}=3^3-\frac{3^3+5^3}{2}+\frac{5^3+7^3}{3}-\frac{7^3+9^3}{4}+...+\frac{197^3+199^3}{99}-\frac{199^3}{100}\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}-\left(16.2^2+12\right)+\left(16.3^2+12\right)-\left(16.4^2+12\right)+...+\left(16.99^2+12\right)\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(3^2-2^2+5^2-4^2+7^2-6^2+...+99^2-98^2\right)\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(2+3+4+5+...+98+99\right)\)
\(\frac{A}{2}=3^3-\frac{199^3}{100}+16\left(99.50-1\right)\)
\(\Rightarrow A=16.99.100-\frac{199^3}{50}+22\) (đến đây bấm máy ra kết quả so sánh cũng được)
\(\Rightarrow A=\frac{2^3.100^2\left(100-1\right)-199^3}{50}+22\)
\(A=\frac{200^3-199^3-2.200^2}{50}+22\)
\(A=\frac{200^2+200.199+199^2-2.200^2}{50}+22\)
\(A=\frac{199^2-200^2+200.199}{50}+22\)
\(A=\frac{-199-200+200.199}{50}+22=\frac{199^2}{50}+18\)
\(A< \frac{199.200}{50}+18=814\)
Vậy \(A< 814\)