K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

Ta có : \(\frac{1}{31}>\frac{1}{40};\frac{1}{32}>\frac{1}{40};\frac{1}{33}>\frac{1}{40};...;\frac{1}{38}>\frac{1}{40};\frac{1}{39}>\frac{1}{40}\)

=> \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)  (1)

            \(\frac{1}{41}>\frac{1}{50};\frac{1}{42}>\frac{1}{50};\frac{1}{43}>\frac{1}{50};...;\frac{1}{48}>\frac{1}{50};\frac{1}{49}>\frac{1}{50}\)

=> \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\) (2)

            \(\frac{1}{51}>\frac{1}{60};\frac{1}{52}>\frac{1}{60};\frac{1}{53}>\frac{1}{60};...;\frac{1}{58}>\frac{1}{60};\frac{1}{59}>\frac{1}{60}\)

=> \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{59}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}=\frac{1}{6}\)(3)

Từ (1) , (2) và (3) => \(\frac{1}{31}+...+\frac{1}{39}+\frac{1}{40}+\frac{1}{41}+...+\frac{1}{49}+\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}+\frac{1}{60}>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)

=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\)

=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{7}{12}\)

=> \(A>\frac{7}{12}\)

Hài lòng chưa má? -_-

 

4 tháng 2 2016

tôi rất dốt toán CMR chắc chỉ còn cách tính A thôi

28 tháng 4 2018

Bài làm

Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90 
       M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
      M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
     M< 1-1/10 < 9/10      (1)
     Vì 9/10 < 1    (2)
     Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1

2 tháng 7 2016

Giải:

Nên ta phải chứng minh:

=> ( điều phải chứng minh)

2 tháng 7 2016

Nên ta phải chứng minh:

=> ( điều phải chứng minh)

7 tháng 8 2015

a, \(\frac{7}{4x}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=22\)

\(\frac{7}{4x}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=22\)

\(\frac{7}{4x}\left[33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]=22\)

\(\frac{7}{4x}\left[33.\left(\frac{35}{420}+\frac{21}{420}+\frac{14}{420}+\frac{10}{420}\right)\right]=22\)

\(\frac{7}{4x}\left[33.\frac{4}{21}\right]=22\)

\(\frac{7}{4x}.\frac{44}{7}\)=22

\(\frac{11}{x}=22\)

x=11:22

x=\(\frac{1}{2}\)

b,\(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right).x=1\)

Đặt A\(=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

Ta có :\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

\(\Rightarrow4A=4.\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right)\)

\(\Rightarrow4A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{64}+\frac{1}{64}\)

\(\Rightarrow4A=\frac{32+16+8+4+2+1}{64}=\frac{63}{64}\)

\(\Rightarrow A=\frac{63}{64}:4=\frac{63}{256}\)

\(\Rightarrow\frac{63}{256}.x=1\)

\(\Leftrightarrow x=1:\frac{63}{256}=\frac{256}{63}\)

22 tháng 6 2017

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)

\(=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)

\(=\frac{1}{10}+\frac{90}{100}>1\)

\(A>1\left(đpcm\right)\)

9 tháng 10 2017

a>1(đpcm)

20 tháng 8 2015

Đặt  \(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=30.\frac{1}{60}=\frac{1}{2}\)

       \(B=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{90}>\frac{1}{90}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}=30.\frac{1}{90}=\frac{1}{3}\)

\(=>Q=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}=A+B>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy \(Q>\frac{5}{6}\)

25 tháng 7 2017

A = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 89 + 1 / 90 ... 5 / 6

A = 5 / 6 = 1 / 2 + 1 / 3

Ta đặt B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 ( 30 phân số )

          C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 ( 30 phân số )

Ta có : B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 > 1 / 60 + 1 / 60 + 1 / 60 + ... + 1 / 60 = 30 . 1 / 60 = 1 / 2

           C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 >  1 / 90 + 1 / 90 + 1 / 90 + ... + 1 / 90 = 30 . 1 / 90 = 1 / 3

Vì A = B + C > 1 / 2 + 1 / 3 = 5 / 6 nên 1 / 31 + 1 / 32 + ... + 1 / 89 + 1 / 90 > 5 / 6

GIẢI VẦY MỚI GỌI LÀ GIẢI CHI TIẾT
 

Ta sẽ lấy 

\(1-\frac{1}{90}=\frac{89}{90}\)

Sau đó ta so sánh : 

\(\frac{89}{90}>\frac{5}{6}\)

k mình nhé !!!