Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2005.2006}\)= \(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2005}\)-\(\frac{1}{2006}\)=
= 1-\(\frac{1}{2006}\)= \(\frac{2005}{2006}\)
a)Ta có:\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(\Rightarrow A=\frac{2005}{2006}\)
b)Ta có:\(\frac{2005}{2006}-1=-\frac{1}{2006}\)
Vì \(\frac{2005}{2006}\) trừ 1 được một số âm thì chứng tỏ \(\frac{2005}{2006}\)<1
Vậy A<1
Câu 2a:
Ta có :
\(\frac{1}{101}>\dfrac{1}{150}\)
\(\frac{1}{102}>\dfrac{1}{150}\)
\(....................\)
\(\dfrac{1}{150}=\dfrac{1}{150}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+......+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+......+\dfrac{1}{150}\) ( có 50 số hạng )
\(\Rightarrow A>\dfrac{1}{150}.50\)
\(\Rightarrow A>\dfrac{1}{3}\) ( 1 )
Ta có :
\(\dfrac{1}{101}< \dfrac{1}{100}\)
\(\dfrac{1}{102}< \dfrac{1}{100}\)
\(.................\)
\(\dfrac{1}{150}< \dfrac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+....+\frac{1}{150}< \dfrac{1}{100}+\dfrac{1}{100}+........+\dfrac{1}{100}\) ( có 50 số hạng )
\(\Rightarrow A< \dfrac{1}{100}.50\)
\(\Rightarrow A< \dfrac{1}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\dfrac{1}{3}< A< \dfrac{1}{2}\)
\(\Rightarrow\)Điều phải chứng minh
Câu 2b với 2c tương tự nên mk sẽ làm 2b nha
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)
\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\left(đpcm\right)\)
a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A< 1+\left(1-\frac{1}{100}\right)\Rightarrow A< 1+1-\frac{1}{100}\Rightarrow A< 2-\frac{1}{100}\Rightarrow A< 2\left(ĐPCM\right)\)
b, \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2011\cdot2012}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow B< 1-\frac{1}{2012}\Rightarrow B< 1\left(1\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2012^2}\)
\(\Rightarrow B>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(\Rightarrow B>\frac{1}{2}-\frac{1}{2013}\Rightarrow\frac{1}{2}-\frac{1}{2013}< B\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{2}-\frac{1}{2013}< B< 1\)
a)A=1+1/22+1/32+....+1/1002
<1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+...+1/99-1/100=2-1/100=199/200<2
b)B=1/22+1/32+...+1/20122
<1/1.2+1/2.3+...+1/2011.2012=1-1/2+1/2-1/3+...+1/2011-1/2012=1-1/2012=2011/2012
1/2-1/2013=2011/4026<2011/2012<1
a)\(\Rightarrow\frac{A}{2}=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)
\(\Rightarrow A-\frac{A}{2}=\frac{1}{2}-\frac{1}{2^{101}}\)
\(\Rightarrow A=\frac{2^{100}-1}{2^{101}}\)
b)vì \(\frac{2^{100}}{2^{100}}=1\in N\Rightarrow\frac{2^{100}-1}{2^{100}}\ne1\notin N\left(đpcm\right)\)