Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)` Xét tử số phân số M :
\(2012-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{2012}{2020}\\ =\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{2012}{2020}\right)\\ =\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{2020}\\ =24\left(\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}\right)\)
Ta được : \(M=\dfrac{24\left(\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}\right)}{\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}}=24\)
`b)` Xét tử số phân số N :
\(\dfrac{1}{1.300}+\dfrac{1}{2.301}+\dfrac{1}{3.302}+...+\dfrac{1}{101.400}\\ =\dfrac{1}{299}.\left(\dfrac{299}{1.300}+\dfrac{299}{2.301}+\dfrac{299}{3.302}+...+\dfrac{299}{101.400}\right)\\ =\dfrac{1}{299}.\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
Xét mẫu số phân số N :
\(\dfrac{1}{1.102}+\dfrac{1}{2.103}+\dfrac{1}{3.104}+...+\dfrac{1}{299.400}\\ =\dfrac{1}{101}.\left(\dfrac{101}{1.102}+\dfrac{101}{2.103}+\dfrac{101}{3.104}+...+\dfrac{101}{299.400}\right)\\ =\dfrac{1}{101}.\left(1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+\dfrac{1}{3}-\dfrac{1}{104}+...+\dfrac{1}{299}-\dfrac{1}{400}\right)\)
\(=\dfrac{1}{101}.\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
Ta được: \(N=\dfrac{\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)}{\dfrac{1}{101}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)}\\ =\dfrac{\dfrac{1}{299}}{\dfrac{1}{101}}=\dfrac{101}{299}\)
\(A=\dfrac{10}{a^m}+\dfrac{10}{a^n}=\dfrac{10a^n+10a^m}{a^{m+n}}\)
\(B=\dfrac{11}{a^m}+\dfrac{9}{a^n}=\dfrac{11a^n+9a^m}{a^{m+n}}\)
Cần so sánh: \(10a^m+10a^n\) và \(9a^m+11a^n\)
Mà \(10a^m+10a^n-9a^m-11a^n\)
\(=a^m-a^n\)
Vậy m < n thì A > B, m < n thì A < B
\(\left(\dfrac{4}{9}-\dfrac{5}{11}\right):\dfrac{3}{10}+\left(\dfrac{3}{9}-\dfrac{9}{11}\right):\dfrac{3}{10}-\left(\dfrac{2}{9}-\dfrac{8}{11}\right)\cdot\left(-\dfrac{10}{3}\right)\\ =\left(\dfrac{4}{9}-\dfrac{5}{11}\right)\cdot\dfrac{10}{3}+\left(\dfrac{3}{9}-\dfrac{9}{11}\right)\cdot\dfrac{10}{3}-\left(\dfrac{2}{9}-\dfrac{8}{11}\right)\cdot\left(-1\right)\cdot\dfrac{10}{3}\\ =\left(\dfrac{4}{9}-\dfrac{5}{11}\right)\cdot\dfrac{10}{3}+\left(\dfrac{3}{9}-\dfrac{9}{11}\right)\cdot\dfrac{10}{3}+\left(\dfrac{2}{9}-\dfrac{8}{11}\right)\cdot\dfrac{10}{3}=\dfrac{10}{3}\cdot\left(\dfrac{4}{9}-\dfrac{5}{11}+\dfrac{3}{9}-\dfrac{9}{11}+\dfrac{2}{9}-\dfrac{8}{11}\right)\\ =\dfrac{10}{3}\cdot\left(-1\right)\\ =-\dfrac{10}{3}\)
Ta có:(4/9-5/11):3/10+(3/9-9/11):3/10-(2/9-8/11).(-10/3)
=[(4/9-5/11)+(3/9-9/11)]:3/10+(-2/9+8/11).(-10/3)
=[(4/9+3/9)+(-5/11-9/11)]:3/10+(-2/9+8/11):(-3/10)
=(7/9-14/11):3/10+(2/9-8/11):3/10 (nhân chuyển dấu)
=[(7/9-14/11)+(2/9-8/11)]:3/10
=(1-2):3/10
=-1.10/3
=-10/3.
a: \(A=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
b: \(B=\left(\dfrac{12}{105}+\dfrac{9^{15}}{3}\right)\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{6^4\cdot2^4}\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot\dfrac{1}{3}\cdot3^4\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot3^3=\dfrac{9\left(12+35\cdot9^{15}\right)}{35}\)
B = \(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
B = \(\dfrac{-2}{11}+\dfrac{35}{66}\)
B = \(\dfrac{-12}{66}+\dfrac{35}{66}\)
B = \(\dfrac{23}{66}\)