K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

câu này dễ.đầu óc phải linh hoat lên chứ cậukhocroi

17 tháng 3 2017

Ta có : A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)

\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)

\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)

\(\Rightarrow A< \dfrac{9}{9}-\dfrac{1}{9}\)

\(\Rightarrow A< \dfrac{8}{9}\) (1)

\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(\Rightarrow A>\dfrac{5}{10}-\dfrac{1}{10}\)

\(\Rightarrow A>\dfrac{4}{10}\)

\(\Rightarrow A>\dfrac{2}{5}\) (2)

Từ (1) và (2)\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\)

8 tháng 5 2017

Câu a :

Chưa nghĩ ra! Sorry nhé!!

Câu b :

Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến

Câu c :

Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến

Vào link đó mà xem, t ngại chép lại

28 tháng 4 2023

Đây nha bạn:

=7−55.7+12−77.12+19−1212.19+28−1919.28+39−2828.39+40−3939.40

=15−17+17−112+112−119+119−128+128−139+139−140

=15−140=740

18 tháng 5 2017

a)Ta có:\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{b+1-b}{b\left(b+1\right)}=\dfrac{1}{b^2+b}< \dfrac{1}{b^2}\)(do b>1)

\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{b-b+1}{\left(b-1\right)b}=\dfrac{1}{b^2-b}>\dfrac{1}{b^2}\)(do b>1)

b)Áp dụng từ câu a

=>\(\dfrac{1}{2}-\dfrac{1}{3}< \dfrac{1}{2^2}< \dfrac{1}{1}-\dfrac{1}{2}\)

\(\dfrac{1}{3}-\dfrac{1}{4}< \dfrac{1}{3^2}< \dfrac{1}{2}-\dfrac{1}{3}\)

.........................

\(\dfrac{1}{9}-\dfrac{1}{10}< \dfrac{1}{9^2}< \dfrac{1}{8}-\dfrac{1}{9}\)

=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}< S< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

=>\(\dfrac{1}{2}-\dfrac{1}{10}< S< 1-\dfrac{1}{9}\)

=>\(\dfrac{2}{5}< S< \dfrac{8}{9}\)(đpcm)

18 tháng 5 2017

thanks bn nhìu

28 tháng 3 2017

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)

Xét: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.

.

.

\(\dfrac{1}{9^2}< \dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\Rightarrow A< \dfrac{8}{9}\)(1)

Xét: \(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

.

.

.

\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\Rightarrow A>\dfrac{2}{5}\) (2)

Từ (1) và (2)

\(\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\left(đpcm\right)\)

18 tháng 2 2021

\(\dfrac{1}{1\cdot2}>\dfrac{1}{2^2}>\dfrac{1}{2\cdot3},\dfrac{1}{2\cdot3}>\dfrac{1}{3^2}>\dfrac{1}{3\cdot4},...,\dfrac{1}{8\cdot9}>\dfrac{1}{9^2}>\dfrac{1}{9\cdot10}\)

\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}>\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\) \(\Rightarrow1-\dfrac{1}{9}>A>\dfrac{1}{2}-\dfrac{1}{10}\) \(\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\)

16 tháng 6 2021

`A=(8 2/7-4 2/7)-3 4/9`

`=8+2/7-4-2/7-3-4/9`

`=4-3-4/9`

`=1-4/9=5/9`

`B=(10 2/9-6 2/9)+2 3/5`

`=10+2/9-6-2/9+2+3/5`

`=4+2+3/5`

`=6+3/5=33/5`

Bài 2:

`a)5 1/2*3 1/4`

`=11/2*13/4`

`=143/8`

`b)6 1/3:4 2/9`

`=19/3:38/9`

`=19/3*9/38=3/2`

`c)4 3/7*2`

`=31/7*2`

`=62/7`

Bài 1:

\(A=\left(8\dfrac{2}{7}-4\dfrac{2}{7}\right)-3\dfrac{4}{9}\) 

\(A=\left(\dfrac{58}{7}-\dfrac{30}{7}\right)-\dfrac{31}{9}\) 

\(A=4-\dfrac{31}{9}\) 

\(A=\dfrac{5}{9}\) 

 

\(B=\left(10\dfrac{2}{9}-6\dfrac{2}{9}\right)+2\dfrac{3}{5}\) 

\(B=\left(\dfrac{92}{9}-\dfrac{56}{9}\right)+\dfrac{13}{5}\) 

\(B=4+\dfrac{13}{5}\) 

\(B=\dfrac{33}{5}\)

16 tháng 3 2017

b)B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)

B<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

B<\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

B<\(1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+...+\left(\dfrac{1}{8}+\dfrac{1}{8}\right)-\dfrac{1}{9}\)

B<1-\(\dfrac{1}{9}\)

B<\(\dfrac{8}{9}\)(1)

ta có:

B>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

B>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{10}\)

B>\(\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{9}+\dfrac{1}{9}\right)-\dfrac{1}{10}\)

B>\(\dfrac{1}{2}-\dfrac{1}{10}\)

B>\(\dfrac{2}{5}\)

15 tháng 3 2022

\(a,\dfrac{3}{5}+\dfrac{-5}{9}=\dfrac{27-25}{45}=\dfrac{2}{49}.\)

\(c,\dfrac{-27}{23}+\dfrac{5}{21}+\dfrac{4}{23}+\dfrac{16}{21}+\dfrac{1}{2}=\dfrac{-23}{23}+\dfrac{21}{21}+\dfrac{1}{2}=-1+1+\dfrac{1}{2}=\dfrac{1}{2}.\)

\(d,\dfrac{-8}{9}+\dfrac{1}{9}.\dfrac{2}{9}+\dfrac{1}{9}.\dfrac{7}{9}=\dfrac{-8}{9}+\dfrac{1}{9}.\left(\dfrac{2}{9}+\dfrac{7}{9}\right)=\dfrac{-8}{9}+\dfrac{1}{9}.1=\dfrac{-8+1}{9}=\dfrac{-7}{9}.\)