Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=k\)
\(\Rightarrow k^2=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\)
\(\Rightarrow k^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
\(\Rightarrow k^2=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
Và \(k.k=\frac{a}{c}.\frac{b}{d}\)
\(\Rightarrow k^2=\frac{ab}{cd}\left(2\right)\)
Từ (1) và (2) , ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
BẠN DÙNG ĐỊNH LÝ TA-LÉT ĐỂ C/M OM=ON
Vì OM // AB & OM // CD nên
\(\frac{OM}{AB}=\frac{DM}{AD}\&\frac{OM}{CD}=\frac{AM}{AD}\)
\(\Rightarrow\frac{OM}{AB}+\frac{OM}{CD}=\frac{DM}{AD}+\frac{AM}{AD}\)
\(\Leftrightarrow OM\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DM+AM}{AD}\)
\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OM}\)(1)
TƯƠNG TỰ \(\frac{1}{AB}+\frac{1}{CB}=\frac{1}{ON}\)(2)
CỘNG VẾ VỚI VẾ CỦA (1) VÀ (2) TA CÓ:
\(2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{ON}\)MÀ OM=ON(C/M TRÊN) NÊN MN=2.OM
\(\Rightarrow2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{OM}=\frac{2}{OM}\)
\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2.OM}=\frac{2}{MN}\left(ĐPCM\right)\)
1.Ta co:\(\frac{AB}{BC}.\frac{BC}{CD}=\frac{5}{7}.\frac{7}{9}=\frac{5}{9}\)
\(\Rightarrow\frac{AB}{CD}=\frac{5}{9}\)
2.Tu gia thuyet suy ra:\(\frac{AB}{5}=\frac{BC}{7}=\frac{CD}{9}\)
Dat \(\frac{AB}{5}=\frac{BC}{7}=\frac{CD}{9}=k\)
\(\Rightarrow\hept{\begin{cases}AB=5k\\BC=7k\\CD=9k\end{cases}}\)
Theo de bai ta co:\(AB+BC+CD=5k+7k+9k=21k=84\)
\(\Rightarrow k=4\)
\(\Rightarrow\hept{\begin{cases}AB=5k=20\\BC=7k=28\\CD=9k=36\end{cases}}\)
:)
Lời giải:
a) Áp dụng định lý Ta-let cho các đoạn thẳng song song:
$OM\parallel AB\Rightarrow \frac{OM}{AB}=\frac{DM}{DA}$
$ON\parallel AB\Rightarrow \frac{ON}{AB}=\frac{CN}{CB}$
$MN\parallel AB\parallel CD\Rightarrow \frac{DM}{DA}=\frac{CN}{CB}$
Do đó: \frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON$
b) Tiếp tục áp dụng định lý Ta-let:
$OM\parallel AB\Rightarrow \frac{OM}{AB}=\frac{OD}{DB}$
$ON\parallel CD\Rightarrow \frac{ON}{CD}=\frac{OB}{DB}$
$\Rightarrow \frac{OM}{AB}+\frac{ON}{CD}=\frac{OD+OB}{BD}=1(*)$
Mà $OM=ON\Rightarrow OM=ON=\frac{OM+ON}{2}=\frac{MN}{2}(**)$
Từ $(*); (**)\Rightarrow \frac{MN}{2AB}+\frac{MN}{2CD}=1$
$\Rightarrow \frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}$ (đpcm)
lời giải vắn tắt:
gọi O là trung điểm AC.suy ra:
OM là đường trung bình của tam giác ABC=> OM//BC và OM=\(\frac{1}{2}BC\)
OP là đường trung bình của tam giác ACD => OP//AD và OP=\(\frac{1}{2}AD\)
=> OM+OP=\(\frac{1}{2}\left(BC+AD\right)\)mà MP=\(\frac{1}{2}\left(AD+BC\right)\)
=> MP=OM+ON.điều này trái với BĐT tam giác trong\(\Delta OMP\)
do vậy O,M,P thẳng hàng => AD//BC
tương tự ta có: AB//CD vậy ABCD là HBH
Từ \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{7a^2+5b^2}{7c^2+5d^2}=\frac{ab}{cd}\Leftrightarrow\frac{7\left(bk\right)^2+5b^2}{7\left(dk\right)^2+5d^2}=\frac{bkb}{dkd}\)
Xét VT \(\frac{7\left(bk\right)^2+5b^2}{7\left(dk\right)^2+5d^2}=\frac{7b^2k^2+5b^2}{7d^2k^2+5d^2}=\frac{b^2\left(7k^2+5\right)}{d^2\left(7k^2+5\right)}=\frac{b^2}{d^2}\left(1\right)\)
Xét VP \(\frac{bkb}{dkd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) -->Đpcm