Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=\)
\(=10\left(a^2-2ab+b^2\right)+10\left(a^2+b^2\right)\)
\(\ge10\left(a-b\right)^2+5.\left(a+b\right)^2\ge0+5.20^2=2000\)
2,a,\(\sqrt{a}+\sqrt{b-1}+\sqrt{c-2}=\frac{1}{2}\left(a+b+c\right)\)
\(\Leftrightarrow a-2\sqrt{a}+b-2\sqrt{b-1}+c-2\sqrt{c-2}=0\)
\(\Leftrightarrow a-2\sqrt{a}+1+b-1-2\sqrt{b-1}+1+c-2+2\sqrt{c-2}+1=0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-1\right)^2+\left(\sqrt{c-2}-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
b,sai đề
Xét \(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow10\ge\sqrt{ab}\Leftrightarrow100\ge ab\)
\(T=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=20\left(a^2-ab+b^2\right)=20\left[a^2+2ab+b^2-3ab\right]=20\left(20\right)^2-6ab\)
\(T\ge20.20^2-6.100=7400\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)
Ta có bất đẳng thức phụ sau (bđt Mincopski)
\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(x;y;z;t\inℝ\right)\)
Thật vậy :
\(bđt\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)
\(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)
*Nếu xz + yt < 0 thì bđt hiển nhiên đúng
*Nếu xz + yt > 0 thì bđt trở thành
\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)
\(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)
\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(ĐÚng)
Vậy bđt được chứng minh
Áp dụng bđt trên 2 lần ta được
\(P\ge\sqrt{\left(5+5\right)^2+\left(a^2+b^2\right)^2}+\sqrt{25+c^4}\)
\(\ge\sqrt{\left(5+5+5\right)^2+\left(a^2+b^2+c^2\right)^2}\)
\(=\sqrt{225+\left(a^2+b^2+c^2\right)^2}\)
Bài toán quay về tìm \(min\left(a^2+b^2+c^2\right)\)biết \(2\left(a+b+c\right)+ab+bc+ca=18\)
Ta có bđt phụ sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)(Tự chứng minh bằng biến đổi tương đương nhé)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Đặt \(3\left(a^2+b^2+c^2\right)=t\left(t\ge0\right)\)
\(\Rightarrow a+b+c\le\sqrt{3t}\)
Lại có bđt phụ sau \(ab+bc+ca\le a^2+b^2+c^2=\frac{t}{3}\)
Tóm lại ta thu được 2 bđt sau \(\hept{\begin{cases}a+b+c\le\sqrt{3t}\\ab+bc+ca\le\frac{t}{3}\end{cases}}\)
Ta có \(18=2\left(a+b+c\right)+ab+bc+ca\le2\sqrt{3t}+\frac{t}{3}\)
\(\Leftrightarrow\frac{t}{3}+2\sqrt{3t}-18\ge0\)
\(\Leftrightarrow t+6\sqrt{3t}-54\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{t}\le-9-3\sqrt{3}\left(Loa_.i\cdot do\cdot\sqrt{t}\ge0\right)\\\sqrt{t}\ge9-3\sqrt{3}\left(Tm\right)\end{cases}}\)
Có \(\sqrt{t}\ge9-3\sqrt{3}\)
\(\Leftrightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge9-3\sqrt{3}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge108-54\sqrt{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge36-18\sqrt{3}\)
Quay trở lại bài toán \(P\ge\sqrt{225+\left(a^2+b^2+c^2\right)^2}\ge\sqrt{225+\left(36-18\sqrt{3}\right)^2}\)
Dấu "=" xảy ra tại a = b = c
P/S: sai đâu thì thôi nha :v a lười ktra lại lắm
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
hả?
bài để thi hok kì I đó hả? đúng khó *_*
mk sẽ ghi lại để sau này mk hok
Ta có:
\(a+b+c=4\)
\(\Rightarrow\) \(a< 4\)
\(\Rightarrow\) \(a^4< 4a^3\) (do \(a>0\) nên \(a^3>0\) )
Do đó, \(a^3>\frac{a^4}{4}\) hay nói cách khác, \(\sqrt[4]{a^3}>\sqrt[4]{\frac{a^4}{4}}=\frac{a}{\sqrt[4]{4}}\) \(\left(1\right)\)
Từ đó, ta cũng tương tự thiết lập được: \(\sqrt[4]{b^3}>\frac{b}{\sqrt[4]{4}}\) \(\left(2\right)\) và \(\sqrt[4]{c^3}>\frac{c}{\sqrt[4]{4}}\) \(\left(3\right)\)
Cộng từng vế các bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) ta có:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)
\(M=\sqrt{\left(a+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}+\sqrt{\left(b+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}+\sqrt{\left(c+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}\)
\(M\ge\sqrt{\left(a+b+c+\frac{3}{2}\right)^2+\left(\frac{3\sqrt{15}}{2}\right)^2}=3\sqrt{6}\)
\(M_{min}=3\sqrt{6}\) khi \(a=b=c=1\)
\(M_{max}\) ko tồn tại