K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2020

hello nha

13 tháng 12 2020

2k? vậy ạ

26 tháng 4 2017

nhân biểu thức liêng hợp ở mẫu là ra

NV
18 tháng 10 2019

Cho dễ nhìn thì \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\)

\(x+y+z=3\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

\(\Rightarrow xy+yz+zx=2\)

\(VT=\sum\frac{x}{x^2+2}=\sum\frac{x}{x^2+xy+yz+zx}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(VP=\frac{4}{\sqrt{\left(x+y\right)\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(z+x\right)}}=\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=VT\) (đpcm)

9 tháng 8 2017

\(\sqrt{a}+\sqrt{b}+\sqrt{c}=3< =>\left(a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\right)=9< =>\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\\ \\ \)
Ở đâu có 2 thì thay vào @@
 

10 tháng 8 2017

Ta có:

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(a+b+c\right)+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\Rightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{3^2-5}{2}=2\)

Ở đâu có 2 thay bằng \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)  là được