Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)
\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
1) \(\left(a-b\right)^2\ge0\)
\(a^2-2ab+b^2\ge0\)
\(a^2+b^2+2ab\ge4ab\)
\(\left(a+b\right)^2\ge4ab\)
\(\dfrac{\left(a+b\right)^2}{4}\ge ab\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
Dấu ''='' xảy ra khi a=b
2) \(\left(\sqrt{2a}-\sqrt{2b}\right)^2\ge0\)
\(2a-4\sqrt{ab}+2b\ge0\)
\(4a+4b\ge2a+2b+4\sqrt{ab}\)
\(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
Dấu ''='' xảy ra khi a=b
Lời giải:
BĐT \(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
$\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2b^2+a^2+b^2+1)$
$\Leftrightarrow a^3b+a^2+ab^3+b^2+2ab+2\geq 2a^2b^2+2a^2+2b^2+2$
$\Leftrightarrow a^3b+ab^3+2ab\geq 2a^2b^2+a^2+b^2$
$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0$
$\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0$
$\Leftrightarrow (a-b)^2(ab-1)\geq 0$
Điều này luôn đúng với mọi $ab\geq 1$
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b$ hoặc $ab=1$
2)a)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
c)\(a^3+b^3-a^2b-ab^2=a^2\left(a-b\right)-b^2\left(a-b\right)=\left(a-b\right)^2\left(a+b\right)\ge0\\ \Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
b)\(a^3+b^3\ge a^2b+ab^2\Leftrightarrow4a^3+4b^3\ge a^3+b^3+3a^b+3ab^2\\ \Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\)
làm rõ \(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)
\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)
\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\) (đúng)
ok thỏa thuận rồi tui làm nửa sau thui nhé :D
Đặt \(a^2=x;b^2=y;c^2=z\) thì ta có:
\(VT=\sqrt{\dfrac{x}{x+y}}+\sqrt{\dfrac{y}{y+z}}+\sqrt{\dfrac{z}{x+z}}\)
Lại có: \(\sqrt{\dfrac{x}{x+y}}=\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)
Tương tự cộng theo vế rồi áp dụng BĐT C-S ta có:
\(VT^2\le2\left(x+y+z\right)\left[\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(y+z\right)\left(y+x\right)}+\dfrac{z}{\left(z+x\right)\left(z+y\right)}\right]\)
\(\Leftrightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
Vì \(VP^2=\dfrac{9}{2}\) nên cần cm \(VT\le \frac{9}{2}\)
\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\left(x+y+z\right)\left(xy+yz+xz\right)\)
Can you continue
Áp dụng bđt Cauchy-Schwarz:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1\right)^2}{b+c}=\dfrac{4}{b+c}\)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{\left(1+1\right)^2}{c+a}=\dfrac{4}{c+a}\)
Cộng theo vế và rút gọn suy ra đpcm
\("="\Leftrightarrow a=b=c\)
Đề bài ko đúng bạn.
Với \(a=b=1\) thay vào \(\Rightarrow1+1\ge2\left(1+1\right)\Rightarrow2\ge4\) (sai)
Đặt vế trái BĐT là P
Ta có:
\(\left(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}\right)\left(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow P.\left(2ab+2bc+2ca\right)\ge1\)
\(\Rightarrow P\ge\dfrac{1}{2\left(ab+bc+ca\right)}\ge\dfrac{1}{2\left(a^2+b^2+c^2\right)}=\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)
\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)
\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge1^2=1\)
\(\Rightarrow a^2+b^2\ge\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)