K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

hình như đây k phải toán lớp 1

14 tháng 10 2018

đây làm gì phải toán lớp 1 mik lớp 5 còn chẳng biết nè

25 tháng 7 2020

\(\text{Σ}\frac{a}{b+2c+3d}=\text{Σ}\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{6\left(ab+bc+cd+ad\right)}\)

\(=\frac{\left(a+b\right)^2+\left(c+d\right)^2+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}=\frac{a^2+c^2+b^2+d^2+2ab+2cd+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}\)

\(\ge\frac{4\left(ab+bc+cd+ad\right)}{6\left(ab+bc+cd+ad\right)}=\frac{2}{3}\)

Dấu = xảy ra khi a=b=c=d

25 tháng 7 2020

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)

\(=\frac{a^2}{ab+2ac+3ad}+\frac{b^2}{bc+2bd+3ab}+\frac{c^2}{cd+2ac+3bc}+\frac{d^2}{ad+2bd+3cd}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{4.\left(ab+ad+bc+bd+ca+cd\right)}\)\(\ge\frac{\left(a+b+c+d\right)^2}{\frac{3}{2}.\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d\)

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

2 tháng 1 2018

bài 1 a, hình như có thêm đk là a+b+c=3

2 tháng 1 2018

Bài 4 nha

Áp dụng BĐT cô si ta có

\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)

Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1

What??!!!!!!!

Đây là bài toán lớp 1 ???

Bn có nhầm ko z??

3 tháng 1 2020

Dạng này dùng hệ số bât định làm gì cho mệt?

Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)Cần...
Đọc tiếp

Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(

Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:

\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)

Cần chứng minh

\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow v^2\left(\left(3v^2+a^2\right)^2+\left(3v^2+b^2\right)^2+\left(3v^2+c^2\right)^2\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+81u^4-108u^2v^2+18v^4+12uw^3\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow135u^4v^2-144u^2v^4+12uv^2w^3-27uv^2+45v^6+3w^3\ge0\)

2
8 tháng 9 2019

WTF Toán Lớp 1

8 tháng 9 2019

thấy mẹ nhầm rồi,  quy đồng quên nhân:(( mai rảnh check lại:((

@Mỹ lệ \(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}.MinP=\Sigma a^2+\frac{\Sigma ab}{\Sigma_{cyc}a^2b}}\)Ta có \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)                                              \(=a^3+b^3+c^3+\Sigma_{cyc}a^2b+\Sigma ab^2\)Áp dụng bđt Cauchy có \(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)\(\Rightarrow3\left(a^2+b^2+c^2\right)=...=\ge3\left(a^2b+b^2c+c^2a\right)\)\(\Rightarrow...
Đọc tiếp

@Mỹ lệ \(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}.MinP=\Sigma a^2+\frac{\Sigma ab}{\Sigma_{cyc}a^2b}}\)

Ta có \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

                                              \(=a^3+b^3+c^3+\Sigma_{cyc}a^2b+\Sigma ab^2\)

Áp dụng bđt Cauchy có 

\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)\(\Rightarrow3\left(a^2+b^2+c^2\right)=...=\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)

Lại có \(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)\(\Rightarrow ab+bc+ca=9-\left(a^2+b^2+c^2\right)\)

Khi đó \(P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}=a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\) 

                                                                                     \(=t-\frac{9-t}{t}\)

Với \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\Rightarrow t\ge3\)

Đến đây dùng pp điểm rơi là ra

1

Cho hỏi bạn hỏi hay trả lời vậy??????????????????

Ko đăng linh tinh ngoài câu hỏi nha!

18 tháng 2 2020

Dễ có các bất đẳng thức sau: (chứng minh bằng cách chuyển vế và phân tích...)

\(\frac{a^2}{2}+b^2\ge\sqrt{2}ab\)

\(b^2+\frac{c^2}{2}\ge\sqrt{2}bc\)

\(\frac{c^2}{2}+d^2\ge\sqrt{2}cd\)

\(d^2+\frac{a^2}{2}\ge\sqrt{2}da\)

Cộng lại là xong.

18 tháng 2 2020

Hoặc SOS cho nó:

\(VT-VP=\frac{1}{4}\left[2\left(a-c\right)^2+\left(a+c-2\sqrt{2}b\right)^2+\left(a+c-2\sqrt{2}d\right)^2\right]\)

Hoặc kinh khủng hơn: 

\(4\left(a^2+b^2\right)\left(VT-VP\right)=2\left(a^2+b^2\right)\left(a-c\right)^2+\left(a^2-ab+ac-2\sqrt{2}ad+2\sqrt{2}b^2-bc\right)^2+\left(a^2+ac+\left(1-2\sqrt{2}\right)ab+bc-2\sqrt{2}bd\right)^2\)

\(\ge0\)

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM