K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2016

cx thành x nha ae

19 tháng 11 2016

Áp dụng bđt bunhiacopxki \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

dấu "=" xảy ra \(< =>ay=bx< =>\frac{a}{x}=\frac{b}{y}\)
 

Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)

\(\Leftrightarrow a^2y^2-2axby+b^2x^2=0\)

\(\Leftrightarrow\left(ay-bx\right)^2=0\)

\(\Leftrightarrow ay=bx\)

hay \(\dfrac{a}{x}=\dfrac{b}{y}\)

Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)

\(\Leftrightarrow a^2y^2-2abxy+b^2x^2=0\)

\(\Leftrightarrow\left(ay-bx\right)^2=0\)

\(\Leftrightarrow ay-bx=0\)

\(\Leftrightarrow ay=bx\Leftrightarrow\dfrac{a}{b}=\dfrac{x}{y}\)

10 tháng 9 2018

Bài 1:

Ta có:

\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Rightarrow2\left(a^2+b^2\right)-\left(a-b\right)^2=0\)

\(\Rightarrow2a^2+2b^2-\left(a^2-2ab+b^2\right)=0\)

\(\Rightarrow2a^2+2b^2-a^2+2ab-b^2=0\)

\(\Rightarrow a^2+2ab+b^2=0\)

\(\Rightarrow\left(a+b\right)^2=0\)

\(\Rightarrow a+b=0\)

Vì hai số đối nhau là hai số có tổng bằng 0

Vậy a và b là hai số đối nhau

Bài 2:

Ta có:

\(a^2+b^2+c^2=ab+bc+ac\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\left(a-b\right)^2\ge0\) với mọi a và b

\(\left(a-c\right)^2\ge0\) với mọi a và c

\(\left(b-c\right)^2\ge0\) với mọi b và c

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) với mọi a, b, c

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)

Vậy a = b = c

Bài 3:

Sửa đề:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)

\(\Rightarrow a^2y^2+b^2x^2=2axby\)

\(\Rightarrow a^2y^2-2axby+b^2x^2=0\)

\(\Rightarrow\left(ay-bx\right)^2=0\)

\(\Rightarrow ay-bx=0\)

\(\Rightarrow ay=bx\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\)

26 tháng 5 2017

Học hành thế này! Tớ mách cô Hiền nhé!

28 tháng 6 2021

\(1.\)

Theo đề ra, ta có:

\(ax+by=c\)

\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)

\(cx+by=b\)

\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)

\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)

Khi đó ta có:

\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)

19 tháng 5 2017

Ta có: (a2 + b2).(x2+ y2) = (ax + by)2

<=> a2x2 + a2y2 + b2x2 + b2y2 = a2x2 + 2axby + b2y2

<=> a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - 2axby - b2y2 = 0

<=> a2y2 - 2axby + b2x2 = 0

<=> ( ay - bx)2 = 0

<=> ay - bx = 0

<=> ay = bx => \(\dfrac{a}{x}=\dfrac{b}{y}\) hoặc \(\dfrac{a}{b}=\dfrac{x}{y}\) ( a,b,x,y \(\ne\) 0) => đpcm

P/s: Đây chính là trường hợp dấu = xảy ra của BĐT Bunhia hehe

14 tháng 8 2015

a) TA có :

\(\left(x^2+cx+2\right)\left(ax+b\right)=ax^3+bx^2+acx^2+bcx+2ax+2b\)

\(=ax^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\) = \(=x^3-x^2-2\)

=> a = 1 

=>\(2b=-2\Rightarrow b=-1\)

=> b + ac = -1 => -1 + 1.c = -1 => -1 + c = -1 => c = -1 + 1 = 0 

VẬy a = 1 ; b = -1 ; c = 0 

29 tháng 1 2020

theo đề bài thì:

\(ax+by+cz=x^3+y^3+z^3-3xyz⋮x^2+y^2+z^2-xy-yz-zx\)

Mà có hằng đẳng thức:

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

=> đpcm

19 tháng 8 2017

Ta có

x2-yz=a

y2-zx=b

z2-xy=c

=>x3-xyz=ax

    y3-xyz=by

    z3-xyz=cz

=> x3+y3+z3-3xyz=ax+by+cz

Lại có

x3+y3+z3-3xyz

=(x+y)3-3x2y-3xy2+z3-3xyz

=[(x+y)3+z3]-3xy(x+y+z)

Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:

=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)

=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=(x+y+z)(x2+y2+z2-xy-yz-zx)

( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)

19 tháng 8 2017

ak mình nhầm tẹo srr nha, đến chỗ

(x+y+z)(x2+y2+z2-xy-yz-zx)

Vì x2-yz=a, y2-zx=b, z2- xy=c

=>x2+y2+z2-xy-yz-zx=a+b+c

=>ax+by+cz=(x+y+z)(a+b+c)

=> DPCM