K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

Xét  a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e)

   \(=\) a^2+b^2+c^2+d^2+e^2 -a-b-c-d-e

    \(=\)a(a-1)+b(b-1)+c(c-1)+d(d-1)

Ta có: a, a-1 là 2 số liên tiếp nên tích chúng chi hết cho 2

tương tự b,c,d,e cũng vậy

\(\Rightarrow\) \(\left\{{}\begin{matrix}a\left(a-1\right)⋮2\\b\left(b-1\right)⋮2\\c\left(c-1\right)⋮2\\d\left(d-1\right)⋮2\end{matrix}\right.\Rightarrow\)a(a-1)+b(b-1)+c(c-1)+d(d-1)   \(⋮\)2

\(\Rightarrow\)a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e) \(⋮\)2

mà a^2+b^2+c^2+d^2+e^2 \(⋮\)2

\(\Rightarrow\)a+b+c+d+e \(⋮\)2

mà a,b,c,d,e nguyên dương

\(\Rightarrow\)a+b+c+d+e>2

\(\Rightarrow\)a+b+c+d+e là hợp số

Lưu ý: muốn chứng minh là hợp số phải chứng minh nó chia hết cho 1 số(không phải số nguyên tố)

còn nếu nó chia hết cho 1 số nguyên tố thì phải lớn hơn số nguyên tố đó

nên sau khi c/m a+b+c+d+e \(⋮\)2 , chúng ta phải c/m a+b+c+d+e>2. chứ lở nó bằng hai thì ko phải hợp số

17 tháng 4 2021

Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$

$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$

$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$

Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$

Suy ra $a+b+c+d+e \vdots 2$

$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$

suy ra $a+b+c+d+e$ là hợp số

29 tháng 3 2019

Xét \(A=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}-a-b-c-d-e=a\left ( a-1 \right )+b\left ( b-1 \right )+c\left ( c-1 \right )+d\left ( d-1 \right )+e\left ( e-1 \right )\)

Mà a , a-1 là 2 số nguyên liên tiếp

\(\Rightarrow a\left ( a-1 \right )\vdots 2\) 

Theo chứng minh trên 

\(\Rightarrow b\left ( b-1 \right ),c\left ( c-1 \right ), d\left ( d-1 \right ), e\left ( e-1 \right )\vdots 2\)

\(\Rightarrow A\vdots 2\) mà \(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}\vdots 2\)

\(\Rightarrow a+b+c+d+e\vdots 2\)

MÀ a,b,c,d,e nguyên dương nên \(a+b+c+d+e > 2\)

\(\Rightarrow a+b+c+d+e\) là hợp số.

 
6 tháng 3 2019

\(a^2-a=a.\left(a-1\right)⋮2\)

tương tự b2-b,c2-c,d2-d,e2-e

\(a^2+b^2+c^2+d^2+e^2-\left(a+b+c+d\right)⋮2\text{ mà }a^2+b^2+c^2+d^2+e^2⋮2\)

\(\Rightarrow a+b+c+d⋮2\text{ mà }a+b+c+d\ge4\Rightarrow a+b+c+d\text{ là hợp số}\)

3 tháng 4 2020

sao a.(a-1) chia hết cho 2 đc

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$

$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$

$\Rightarrow (a+b+c+d)^2\vdots 2$

$\Rightarrow a+b+c+d\vdots 2$

Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$

Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:

$a^2+b^2+c^2+d^2+e^2=a(b+c+d+e)$

$\Leftrightarrow 4a^2+4b^2+4c^2+4d^2+4e^2-4a(b+c+d+e)=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2-4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4e^2-4ae)=0$

$\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2e)^2=0$

Ta thấy: $(a-2b)^2,(a-2c)^2,(a-2d)^2,(a-2e)^2\geq 0$ với mọi $a,b,c,d,e$ thực

Do đó để tổng của chúng bằng $0$ thì:

$(a-2b)^2=(a-2c)^2=(a-2d)^2=(a-2e)^2=0$

$\Leftrightarrow 2b=2c=2d=2e=a$

$\Rightarrow b=c=d=e$

11 tháng 9 2021

\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\dfrac{a^2}{4}-ab+b^2\ge0\Leftrightarrow\dfrac{a^2}{4}+b^2\ge ab\)

CMTT ta được: \(\left\{{}\begin{matrix}\dfrac{a^2}{4}+c^2\ge ac\\\dfrac{a^2}{4}+d^2\ge ad\\\dfrac{a^2}{4}+e^2\ge ae\end{matrix}\right.\)

\(\Rightarrow4.\dfrac{a^2}{4}+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(ĐTXR\Leftrightarrow\dfrac{a}{2}=b=c=d=e\)