Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn xem cái m đầu tiên đi nhé, mình thấy nó sao sao ấy, mình sẽ làm kia cho bạn
đặt
\(\dfrac{a}{b}=\dfrac{c}{d}=n\\ < =>\left\{{}\begin{matrix}a=bn\\c=dn\end{matrix}\right.\)
có
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\\ =\left(\dfrac{bn+b}{dn+d}\right)^2\\ =\left[\dfrac{b\left(n+1\right)}{d\left(n+1\right)}\right]^2\\ =\left(\dfrac{b}{d}\right)^2\left(1\right)\)
và
\(\dfrac{a^2+b^2}{c^2+d^2}\\ =\dfrac{\left(bn\right)^2+b^2}{\left(dn\right)^2+d^2}\\ =\dfrac{b^2n^2+b^2}{d^2n^2+d^2}\\ =\dfrac{b^2\left(n^2+1\right)}{d^2\left(n^2+1\right)}\\ =\dfrac{b^2}{d^2}\\ =\left(\dfrac{b}{d}\right)^2\left(2\right)\)
từ 1 và 2
=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
ko hiểu chỗ nào thì hỏi mình nhé, mình nói cho :)
chúc may mắn
ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
dddddddddddddddddddddddddddđ
qqqqqqqqqqqqqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
xxxxxxx
ta có \(\frac{a}{b}=\frac{c}{d}\)nên \(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)\(=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)
mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(tính chất dãy tỉ số bằng nhau)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)(tính chất dãy tỉ số bằng nhau)(đpcm)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó, ta có : \(\frac{3bk+2b}{2bk+3b}=\frac{\left(3k+2\right)b}{\left(2k+3\right)b}=\frac{3k+2}{2k+3}\)(1)
\(\frac{3dk+2d}{2dk+3d}=\frac{\left(3k+2\right).d}{\left(2k+3\right).d}=\frac{3k+2}{2k+3}\)(2)
Từ (1) và (2), suy ra : \(\frac{3a+2b}{2a+3b}=\frac{3c+2d}{2c+3d}\)