K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

Ta áp dụng Cauchy 2 số

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\cdot2abcd\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)

Dấu = khi \(\begin{cases}a^4=b^4\\c^4=d^4\\a^2b^2=c^2d^2\end{cases}\)\(\Rightarrow a=b=c=d\)

 

15 tháng 8 2016

Nhanh hơn có thể dùng Cauchy 4 số 

\(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4b^4c^4d^4}\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\)

Dấu = khi các biến bằng nhau

\(\Leftrightarrow a=b=c=d\)

AH
Akai Haruma
Giáo viên
20 tháng 2 2022

Lời giải:

PT $\Leftrightarrow (a^2+b^2)^2-2(a^2+b^2)c^2+c^4-a^2b^2=0$

$\Leftrightarrow (a^2+b^2-c^2)^2-(ab)^2=0$

$\Leftrightarrow (a^2+b^2-c^2-ab)(a^2+b^2-c^2+ab)=0$

$\Rightarrow a^2+b^2-c^2-ab=0$ hoặc $a^2+b^2-c^2+ab=0$

Áp dụng định lý cosin:

Nếu $a^2+b^2-c^2-ab=0$

$\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+b^2-c^2}{2(a^2+b^2-c^2)}=\frac{1}{2}$

$\Rightarrow \widehat{C}=60^0$

Nếu $a^2+b^2-c^2+ab=0$

$\cos C=\frac{-1}{2}\Rightarrow \widehat{C}=120^0$

 

NV
13 tháng 1 2021

\(VT=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)

\(=\left(a^2-b^2-c^2\right)^2-\left(2bc\right)^2\)

\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)

\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(a-b-c\right)\left(a+b+c\right)\left(a+c-b\right)\left(a+b-c\right)\)

Do a;b;c là độ dài 3 cạnh của tam giác, ta có:

\(\left\{{}\begin{matrix}a-b-c< 0\\a+b+c>0\\a+c-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrow VT< 0\) (đpcm)

14 tháng 1 2021

Mình dùng định lí cos vào có được ko ạ

26 tháng 11 2018

Chọn A.

Từ giả thiết suy ra: a > b và a > c do đó góc A là góc lớn nhất

Khi đó: a4 = b4 +c4 < a2b2 + a2c2

Suy ra a2 < b2 + c2

Mặt khác theo định lí côsin ta có

 do đó 

Vậy tam giác ABC nhọn.

NV
7 tháng 3 2020

Đặt 4 căn thức lần lượt là \(\left(x;y;z;t\right)\)

\(\Rightarrow x^2+y^2+z^2+t^2=3\)

Ta cần chứng minh: \(x+y+z+t\le2\sqrt{3}\)

Áp dụng BĐT Bunhiacopxki:

\(\left(x+y+z+t\right)^2\le\left(1+1+1+1\right)\left(x^2+y^2+z^2+t^2\right)=12\)

\(\Rightarrow x+y+z+t\le2\sqrt{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d=\frac{1}{4}\)

P/s: việc đặt chỉ để viết cho ngắn, còn thực chất bạn áp dụng luôn Buniacopxki cho 1 dòng cũng được

NV
12 tháng 2 2020

Đặt vế trái là P

\(\frac{a^3}{b^2}+b+b\ge3\sqrt[3]{\frac{a^3b^2}{b^2}}=3a\)

Tương tự: \(\frac{b^3}{c^2}+2c\ge3b\) ; \(\frac{c^3}{d^2}+2d\ge3c\); \(\frac{d^3}{a^2}+2a\ge3d\)

Cộng vế với vế:

\(P+2\left(a+b+c+d\right)\ge3\left(a+b+c+d\right)\)

\(\Leftrightarrow P\ge a+b+c+d\)

Dấu "=" xảy ra khi \(a=b=c=d\)