K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2021

\(S=\left(1+\dfrac{2a}{3b}\right)\left(1+\dfrac{2b}{3c}\right)\left(1+\dfrac{2c}{3d}\right)\left(1+\dfrac{2d}{3a}\right)\)

có \(1+\dfrac{2a}{3b}\ge2\sqrt{\dfrac{2a}{3b}}\)(BDT AM-GM)

\(=>1+\dfrac{2b}{3c}\ge2\sqrt{\dfrac{2b}{3c}}\)

\(=>1+\dfrac{2c}{3d}\ge2\sqrt{\dfrac{2c}{3d}}\)

\(=>1+\dfrac{2d}{3a}\ge2\sqrt{\dfrac{2d}{3a}}\)

\(=>S\ge16\sqrt{\dfrac{2a.2b.2c.2d}{3a.3b.3c.3d}}=16\sqrt{\dfrac{16abcd}{81abcd}}=16\sqrt{\dfrac{16}{81}}=\dfrac{64}{9}\)

4 tháng 7 2021

thanks

3 tháng 11 2017

Sorry ko bt làm !

21 tháng 10 2019

Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

NV
5 tháng 3 2021

Đề bài sai

Phản ví dụ: \(a=\dfrac{1}{2};b=2;c=4\) vì VT<VP

6 tháng 11 2016

Bài 2:

Áp dụng Bdt Cauchy-Schwarz dạng engel, ta có

\(VT\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)

Mà theo Bđt cosi 

\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)

\(=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)