Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC . có:
A. BD = 20/7 cm; CD = 15/7cm.
B. BD = 15/7 cm; CD = 20/7 cm
C. BD = 1,5 cm; CD = 2,5 cm
D. BD = 2,5 cm; CD = 1,5 cm
Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:
A. DA = 8/3 ; DC = 10/3
B. DA = 10/3; DC = 8/3
C. DA = 4; DC = 2
D. DA = 2,5; DC = 2,5
Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:
A. 1/AB + 1/AC = 2/AD
B. 1/AD + 1/AC = 1/AB
C. 1/ AB + 1/AC = 1/AD
D. 1/AB + 1/AC = 1
Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :
A. x = 14
B. x = 12
C. x = 8
D. Một kết quả khác
Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :
A.10
B.10_5/7
C.14
D.14_2/7
Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:
A. 1/4
B. 1/2
C. 3/4
D.1/3
Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:
A. 3,5
B.5
C. 40/7
D.6
Bài 8:
Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:
A. ME//AC
B. góc AEF = 50°
C. Góc FMC = 50°
D. MB/MA= FA/FC
Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc:
A. DA = 3cm
B. DB = 5cm
C. AC = 6cm
D. Cả 3 đều đúng
Bài 2:
Gọi giao điểm của MP và NQ là O
\(MP^2+NQ^2\)
\(=MO^2+2\cdot MO\cdot OP+OP^2+NO^2+QO^2+2\cdot NO\cdot QO\)
\(=MO^2+NO^2+OP^2+OP^2+2\cdot OQ^2+2\cdot MO^2\)
\(=MN^2+PQ^2+2\cdot MQ^2\)
Zới mọi \(x,y>0\), áp dụng BĐT AM-GM ta có
\(x^2+y^2=\frac{2xy\left(x^2+y^2\right)}{2xy}\le\frac{\frac{\left(2xy+x^2+y^2\right)^2}{4}}{2xy}=\frac{\left(x+y\right)^4}{8xy}\)
sử dụng kết quả trên ta thu đc các kết quả sau
\(a^2+c^2\le\frac{\left(a+c\right)^4}{8ac}=\frac{\left(a+c\right)^4bd}{8abcd}\le\frac{\left(a+c\right)^4\left(b+d\right)^2}{32abcd}\)
\(b^2+d^2\le\frac{\left(b+d\right)^4}{8bd}=\frac{\left(b+d\right)^4ac}{8abcd}\le\frac{\left(b+d\right)^4\left(c+a\right)^2}{32abcd}\)
Như zậy ta chỉ còn cần CM đc
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}+\frac{1}{da}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)
BĐT trên tương đương zới
\(\frac{\left(a+c\right)\left(b+d\right)}{abcd}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)
hay
\(\left(a+c\right)\left(b+d\right)\left[\left(a+c\right)^2+\left(b+d\right)^2\right]\le32\)
đến đây bạn lại sử dụng kết quả trên ta có ĐPCM nhá
Dễ thấy đẳng thức xảy ra khi a=b=c=d=1