Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ADB\):
\(AE=EB\left(gt\right)\)
\(HD=HA\left(gt\right)\)
\(\Rightarrow HE\)là đường trung binh cũa \(\Delta ADB\).
\(\Rightarrow HE\)//\(DB\)và \(HE=\frac{1}{2}DB\left(1\right)\)
Xét \(\Delta CDB:\)
\(FB=FC\left(gt\right)\)
\(GC=GD\left(gt\right)\)
\(\Rightarrow GF\) là dường trung bình của \(\Delta CBD\).
\(\Rightarrow GF\)//\(DB\)và \(GF=\frac{1}{2}DB\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\)\(HE\)//\(GF\)và \(HE=GF\)
Vậy tứ giác \(EFGH\)là hình bình hành.
b) Xét \(\Delta AEH\)và \(\Delta EBF\):
\(AE=EB\left(gt\right)\)
Góc A = Góc B = 90o (ABCD là hình chữ nhật)
\(AD=BC\Rightarrow\frac{1}{2}AD=\frac{1}{2}BC\Rightarrow AH=BF\)
\(\Rightarrow\Delta AEH=\Delta EBF\left(c.g.c\right)\)
\(\Rightarrow HE=HF\)
mà tứ giác EFGH là hình bình hành.
Vậy hình bình hành \(EFGH\)là hình thoi.
Xét ΔACB có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình của ΔACB
Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)
Xét ΔADC có
H là trung điểm của AD
G là trung điểm của CD
Do đó: HG là đường trung bình của ΔADC
Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra EF//HG và EF=HG
Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: \(EH=\dfrac{BD}{2}=\dfrac{AC}{2}\left(3\right)\)
Từ (1) và (3) suy ra EF=EH
Xét tứ giác EHGF có
EF//GH
EF=GH
Do đó: EHGF là hình bình hành
mà EF=EH
nên EHGF là hình thoi
a: Xét ΔABD có
E là trung điểm của BA
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của CD
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//FG và EH=FG
hay EHGF là hình bình hành
a) Âp dụng tính chất đường trung bình cho DBAC và DADC ta có:
EF//HG; EF = HG = 0.5AC và HE//HG; HE = FG = 0.5BD.
Mà ABCD là hình chữ nhật nên AB = BD Þ EFGH là hình thoi.
b) Gọi O = AC Ç BD Þ O là trung điểm của AC và BD. Chứng minh EBGD và BFDH là hình bình hành suy ra AC, BD,EG, FH đồng quy tại trung điểm mỗi đường (điểm O).
Bài 1
Áp dụng tính chất đường trung bình vào
*\large\Delta ABD có: AE=EB, BH=HD EH //AD, EH=\frac{AD}{2}
*\large\Delta ACD có: AF=CF, DG=GC GF //AD, GF=\frac{AD}{2}
*\large\Delta ABC có: AE=EB, BF=CF EF //AD, EF=\frac{BC}{2}
*\large\Delta BCD có: BH=HD, DG=GC HG //AD, GH=\frac{BC}{2}
Tứ giác EFGH có: EH//GF//AD, EH=GF=\frac{AD}{2}
EFGH là hbh
a)Để EFGH là hcn EH \perp \ EF, EF \perp \ FG, FG \perp \ GH
mà EH//AD, EF//BC, FG//AD , GH//BC
AB \perp \ BC
\widehat{ADC}+\widehat{BCD}=90^o
__________________
mình lớp 5 mong bạn thông cảm