Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}AE=FC\\AE//FC\left(AB//CD\right)\end{matrix}\right.\Rightarrow AECF\) là hbh
\(b,AE=CF\left(gt\right);AB=CD\left(hbh.ABCD\right)\\ \Rightarrow AB-AE=CD-CF\\ \Rightarrow BE=FD\)
\(c,\left\{{}\begin{matrix}BE=FD\left(cm.trên\right)\\BE//FD\left(AB//CD\right)\end{matrix}\right.\Rightarrow DEBF\) là hbh
\(d,\) Gọi M là giao AC và BD
Mà ABCD là hbh nên M là trung điểm AC,BD
Mà DEBF là hbh, M là trung điểm BD nên cũng là trung điểm EF
Do đó AC,BD,EF đồng quy tại M
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Ta có: AE+BE=AB
FC+FD=CD
mà AB=CD
và AE=CF
nên BE=FD
1) Vì ABCD là hình bình hành nên AB//CD hay AE//CF
Xét tứ giác AECF có AE//CF, AE=CF
=> AECF là hình bình hành
2) Vì AbCDlà hình bình hành nên O là trung điểm của AC (1)
Mà AECF là hình bình hành có 2 đường chéo AC và EF cắt nhau tại O (2)
Suy ra O là trung điểm của EF
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
a. Vì ABCD là hbh nên AB//CD hay AE//CF
Mà AE=CF nên AECF là hbh
b. Gọi M là giao AC và BD
Vì ABCD là hbh nên M là trung điểm AC và BD
Vì AECF là hbh mà M là trung điểm AC nên M là trung điểm EF
Vậy AC,BD,EF đồng quy tại M
tham khảo
a) Xét tứ giác AECF ta có:
AE = FC (gt)
AE // FC (ABCD là hình bình hành)
=> AECF là hình bình hành (dhnb).
Vì ABCD là hình bình hành => AB=CD
Mà AE = CF => EB=DF.
Xét tứ giác EBFD ta có:
EB=DF (cmt)
EM//DF (ABCD là hình bình hành).
=>EBFD là hình bình hành (dhnb).
b) Vì ABCD là hình bình hành => AD=BC
Mà DG = BH => AG=HF.
Xét tam giác AEG và tam giác CFH ta có:
Góc A = góc C (2 góc đối của hbh ABCD)
AE = CF (gt)
AG = HC (cmt)
=> tam giác AEG = tam giác CFH (c-g-c)
=> AG = FH (1)
Chứng minh tương tự với tam giác DGF = tam giác BHE (c-g-c)
=> EH = GF (2)
Từ (1) và (2) => tứ giác EHFG là hình bình hành (tứ giác có các cạnh đối bằng nhau).
c) Gọi I là giao điểm của AC và BD.
=> I là trung điểm của AC và BD.
Ta có AECF là hbh (cmt)
=> AC và EF cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của AC => I cũng là trung điểm của EF.
=> AC, BD, EF đồng quy tại I.
a) Xét tứ giác AECF ta có:
AE = FC (gt)
AE // FC (ABCD là hình bình hành)
=> AECF là hình bình hành (dhnb).
Vì ABCD là hình bình hành => AB=CD
Mà AE = CF => EB=DF.
Xét tứ giác EBFD ta có:
EB=DF (cmt)
EM//DF (ABCD là hình bình hành).
=>EBFD là hình bình hành (dhnb).
b) Vì ABCD là hình bình hành => AD=BC
Mà DG = BH => AG=HF.
Xét tam giác AEG và tam giác CFH ta có:
Góc A = góc C (2 góc đối của hbh ABCD)
AE = CF (gt)
AG = HC (cmt)
=> tam giác AEG = tam giác CFH (c-g-c)
=> AG = FH (1)
Chứng minh tương tự với tam giác DGF = tam giác BHE (c-g-c)
=> EH = GF (2)
Từ (1) và (2) => tứ giác EHFG là hình bình hành (tứ giác có các cạnh đối bằng nhau).
c) Gọi I là giao điểm của AC và BD.
=> I là trung điểm của AC và BD.
Ta có AECF là hbh (cmt)
=> AC và EF cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của AC => I cũng là trung điểm của EF.
=> AC, BD, EF đồng quy tại I.