K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

bài này áp dụng bài tỉ lệ thức của lớp 7 

bạn có thể áp dụng tinhd chất sau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{c+a}{d+b}\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:
a) 

$\frac{a}{b}< \frac{c}{d}\Leftrightarrow \frac{ad}{bd}< \frac{bc}{bd}$

$\Leftrightarrow \frac{ad-bc}{bd}< 0$

Vì $bd>0$ với mọi $b,d>0$ nên $ad-bc< 0\Leftrightarrow ad< bc$

b) Từ phần a suy ra $bc-ad>0$

$\frac{a+c}{b+d}-\frac{a}{b}=\frac{b(a+c)-a(b+d)}{b(b+d)}=\frac{bc-ad}{b(b+d)}>0$ do $bc-ad>0$ và $b(b+d)>0$ với mọi $b,d>0$)

$\Rightarrow \frac{a+c}{b+d}>\frac{a}{b}$

Lại có:
$\frac{a+c}{b+d}-\frac{c}{d}=\frac{d(a+c)-c(b+d)}{d(b+d)}=\frac{ad-bc}{d(b+d)}<0$ do $ad-bc<0$ và $d(b+d)>0$ với mọi $b,d>0$

$\Rightarrow \frac{a+c}{b+d}< \frac{c}{d}$ 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
1 tháng 12 2021

Lời giải:

a.

$(a-b)-(c-d)+(b+c)=a-b-c+d+b+c=(a+d)+(-b+b)+(-c+c)$

$=a+d+0+0=a+d$

b.

$(a+b-c)-(a-b+c)=a+(-b-a+c)$

$a+b-c-a+b-c=a-b-a+c$

$(a-a)+(b+b)-(c+c)=(a-a)-b+c$

$2b-2c=-b+c$

$2b+b=2c+c$

$3b=3c$

$b=c$ (đpcm)

DD
7 tháng 10 2021

A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)

\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)

suy ra đpcm. 

\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)

suy ra đpcm. 

B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)

\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)

suy ra đpcm. 

2 tháng 8 2019

Tính được A + B = a - c - 4; và C - D = a - c - 4, từ đó suy ra ĐPCM

29 tháng 11 2018

Câu hỏi của Hiền Hòa - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé! :)

30 tháng 11 2018

em cam on co

4 tháng 8 2019

1) a( b+c) - b(a-c) = ( a+b) c

VT = a( b+c) - b(a-c) 

= ab + ac - ab + bc

= ac + bc

= c(a + b) (=VP)

2)a (b - c)- a (b+d)= - a (c+d)

VT= a (b - c)- a (b+d)

= ab - ac - ab - ad

= -ac - ad

= -a(c + d) (=VP)