K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 5 2022

Ta có: \(1=a^2+b^2+c^2\ge ab+bc+ca\).

\(P=\dfrac{a^3}{b+2c}+\dfrac{b^3}{c+2a}+\dfrac{c^3}{a+2b}=\dfrac{a^4}{ab+2ca}+\dfrac{b^4}{bc+2ab}+\dfrac{c^4}{ca+2bc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\dfrac{1}{3\left(ab+bc+ca\right)}\ge\dfrac{1}{3}\)

Dấu \(=\) xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\).

19 tháng 12 2016

Bạn biết BĐT Cauchy-Schwarz dạng phân thức không nhỉ?

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ca}+\frac{b^4}{bc+ab}+\frac{c^4}{ca+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)

Đến đây áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\) ta có

\(P\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 1:

$a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$

Do đó để tổng của chúng bằng $0$ thì $a-b=b-c=c-a=0$

$\Leftrightarrow a=b=c$

Mà $a+b+c=3$ nên $a=b=c=1$

$\Rightarrow Q=(1+1)^2+(1+2)^3+(1+3)^3=95$

28 tháng 3 2016

\(2.\) Ba số dương a,b,c chứ?

28 tháng 3 2016

câu 1 bn bình phương vế 2x+y đi nhé!