Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân cả vế với abc ta có điều cần chứng minh
\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)
VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)
=>(đpcm)
mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)
chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé
\(\dfrac{a^3}{b}+ab+\dfrac{b^3}{c}+bc+\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{a^4b}{b}}+2\sqrt{\dfrac{b^4c}{c}}+2\sqrt{\dfrac{c^4a}{a}}=2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
áp dụng AM GM ta có a^3/b+ab>=2a^2
chứng minh tương tự => a^3/b+b^3/c+c^3/a>=2(a^2+b^2+c^2)-(ab+bc+ca)
mà ta có a^2+b^2+c^2>=(ab+bc+ca)
=>a^3/b+b^3/c+c^3/a>= ab+bc+ca
"=" xảy ra khi a=b=c
Lời giải:
$a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:
$a-b=b-c=c-a=0$
$\Rightarrow a=b=c$
$\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1$
Khi đó:
$(\frac{a}{b}+1)(\frac{b}{c}+1)(\frac{c}{a}+1)=(1+1)(1+1)(1+1)=8$
Ta có đpcm.
a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\)
\(a^2+b^2+c^2-ab-ac-bc=0\)
\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ac\right)\right]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4=4\left(ab+bc+ac\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)
Mà \(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+abc\left(a+b+c\right)\)
\(=a^2b^2+b^2c^2+a^2c^2\)
nên \(a^4+b^4+c^4=4\left(ab+bc+ac\right)^2-2\left(ab+bc+ac\right)^2\)
\(a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\left(đpcm\right)\)
=> a^2—2ab+b^2 +b^2-2bc+c^2+c^2-2ca+a^2-4a^2-4b^2-4c^2+4ab+4bc+4ca=0
=> —(2a^2+2^2+2c^2-2ab-2bc-2ca)=0
=>(a-b)^2+(b-c)^2+(c-a)^2=0
=>a=b;b=c;c=a
=>a=b=c
Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=2\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)
\(\Leftrightarrow-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2=0\)
Vì \(\left\{{}\begin{matrix} -\left(a-b\right)^2\le0\\-\left(b-c\right)^2\le0\\-\left(c-a\right)^2\le0\end{matrix}\right.\Rightarrow-\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\le0\)
Dấu ''= '' xảy ra \(\Leftrightarrow a=b=c\)
Vậy với a=b=c thì \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)