Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT tương đương : \(\frac{a\left(a+c+b-3b\right)}{1+ab}+\frac{b\left(b+a+c-3c\right)}{a+bc}+\frac{c\left(c+b+a-3a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{3a\left(1-b\right)}{1+ab}+\frac{3b\left(1-c\right)}{1+bc}+\frac{3c\left(1-a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+\frac{b\left(1-c\right)}{1+bc}+\frac{c\left(1-a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+1+\frac{b\left(1-c\right)}{1+bc}+1+\frac{c\left(1-a\right)}{1+ca}\ge3\)
\(\Leftrightarrow\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\)
Áp dụng BĐT Cosi ta có: \(\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\)
Ta phải chứng minh: \(\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\ge1\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)
Thật vậy \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge a^2b^2c^2+abc\left(a+b+c\right)+ab+bc+ca+1\)
\(\Leftrightarrow3\ge a^2b^2c^2+2abc\) (*)
Từ a+b+c=3 => \(3\ge3\sqrt[3]{abc}\Leftrightarrow abc\le1\)
=> (*) đúng
Vậy \(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)
Đẳng thức xảy ra <=> a=b=c=1
\(ab\left(a+b-2c\right)+bc\left(b+c-2a\right)+ca\left(c+a-2b\right)\ge0\)
\(\Leftrightarrow ba^2+ab^2-2abc+cb^2+bc^2-2abc+ca^2+ac^2-2abc\ge0\)
\(\Leftrightarrow\left(ab^2+ac^2-2abc\right)+\left(ba^2+bc^2-2abc\right)+\left(ca^2+cb^2-2abc\right)\ge0\)
\(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\) (luôn đúng)
\(\sum\frac{a\left(a+c-2b\right)}{1+ab}\ge0\Leftrightarrow\sum\frac{a\left(3-3b\right)}{1+ab}\ge0\Leftrightarrow\sum\frac{a\left(1-b\right)}{1+ab}\ge0\)
Ta có:
\(VT=\sum\frac{a\left(1-b\right)}{1+ab}=\sum\left(a-\frac{ab\left(1+a\right)}{1+ab}\right)\ge\sum\left(a-\frac{ab\left(1+a\right)}{2\sqrt{ab}}\right)\)
\(VT\ge\sum\left(a-\frac{1}{4}\left(2.1.\sqrt{ab}+2.a.\sqrt{ab}\right)\right)\ge\sum\left(a-\frac{1}{4}\left(1+ab+a^2+ab\right)\right)\)
\(\Rightarrow VT\ge3-\frac{3}{4}-\frac{1}{4}\left(a+b+c\right)^2=0\)
Dấu "=" xảy ra khi \(a=b=c=1\)
a.
\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2\ge2abc\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2b^2-2a^2bc+c^2a^2\right)+\left(a^2b^2-2ab^2c+b^2c^2\right)+\left(b^2c^2-2abc^2+a^2c^2\right)\ge0\)
\(\Leftrightarrow\left(ab-ca\right)^2+\left(ab-bc\right)^2+\left(bc-ca\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\) (đúng theo câu a đã chứng minh)
Thật ra bài này là một câu trắc nghiệm thôi và mình muốn có lời giải rõ ràng. Có 4 đáp án các bạn chọn và giải rõ ràng ra nhé.
Hệ số k tốt nhất là:
A. \(\frac{1}{2}\)
B. \(\frac{1}{3}\)
C. \(\frac{1}{4}\)
D. \(\frac{1}{5}\)