Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^3+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)
Tương tự ta cũng có:
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\)\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}\right)\)
Mà: \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{1}{ab+b+1}+\)\(\frac{ab}{ab^2+abc+ab}+\frac{b}{bca+ab+b}=1\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(đpcm\right)\)\(\Leftrightarrow a=b=c=1\)
Ta có :\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\)\(>=2ab+2b+2=2\left(ab+b+1\right)\)
tương tự ta được \(b^2+2c^2+3>=2\left(bc+c+1\right)\)
\(c^2+2a^2+3>=2\left(ac+a+1\right)\)
theo đề bài abc=1
=> \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\)=\(\frac{1}{ab+b+1}+\frac{ab}{b+ab+1}+\frac{b}{ab+b+1}\)=1
=> VT<=1/2
Dấu bằng khi a=b=c=1
Ta có :$a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2$a2+2b2+3=(a2+b2)+(b2+1)+2$>=2ab+2b+2=2\left(ab+b+1\right)$>=2ab+2b+2=2(ab+b+1)
tương tự ta được $b^2+2c^2+3>=2\left(bc+c+1\right)$b2+2c2+3>=2(bc+c+1)
$c^2+2a^2+3>=2\left(ac+a+1\right)$c2+2a2+3>=2(ac+a+1)
theo đề bài abc=1
=> $\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}$1ab+b+1 +1bc+c+1 +1ca+a+1 =$\frac{1}{ab+b+1}+\frac{ab}{b+ab+1}+\frac{b}{ab+b+1}$1ab+b+1 +abb+ab+1 +bab+b+1 =1
=> VT<=1/2
Dấu bằng khi a=b=c=1
Áp dụng BĐT Cô-si ta có:
\(a^2+b^2\ge2ab;b^2+1^2\ge2b\)
\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2\)
\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}=\frac{1}{2}.\frac{1}{ab+b+1}\)
chứng minh tương tự
\(\Rightarrow\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1};\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ac+a+1}\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\)
\(=\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)
\(=\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.1=2\)
=>đpcm
Bài này chả khó với lại đầy người đăng rồi
Ta có: \(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\)
\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)
Tương tự ta có: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)
Cộng theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:
\(VT\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)
\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)
\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}=VP\) (ĐPCM)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài làm:
Ta có: \(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)
Tương tự ta CM được:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)
\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ca+a+1\right)}\)
Cộng vế 3 BĐT trên ta được:
\(VP\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab^2c+abc+ab}+\frac{b}{abc+ab+b}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)\)
\(=\frac{1}{2}.\frac{ab+b+1}{ab+b+1}=\frac{1}{2}.1=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
p/s : đéo biết làm thì câm mẹ mồm lại , loại súc vật như bạn ý thì cút khỏi olm cho sạch ạ !
Theo Cauchy ta dễ có : \(b^2+1\ge2\sqrt{b^2}=2b\)
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
Khi đó : \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2+2b+2ab}=\frac{1}{2\left(ab+b+1\right)}\)
Bằng cách chứng minh tương tự rồi cộng theo vế các bđt cùng chiều thì ta được :
\(VT\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ca+a+1}=\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
Đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{ac}{abc.c+abc+ac}+\frac{a}{abc+ca+1}+\frac{1}{ca+a+1}=1\)
Từ đó ta thu được \(VT\le\frac{1}{2}.1=\frac{1}{2}\)hay \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le1\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
Vậy ta có điều phải chứng minh