K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2019

Ta chứng minh được

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta lại chứng minh được:

\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đây là bài thi vào 10 của Thanh Hóa thì phải

20 tháng 6 2019

Anh ơi sao e ko nhắn đc cho anh nhỉ??!

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

7 tháng 6 2019

\(VT\leΣ\frac{1}{a^2+b^2+1}\le\frac{a^2+b^2+c^2+6}{\left(a+b+c\right)^2}\le\frac{\left(Σa\right)^2}{\left(Σa\right)^2}=1=VP\)

8 tháng 6 2019

Bạn giải rõ ra được không

19 tháng 5 2020

Đề: \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\) ???

*Ta chứng minh : \(x^4-x^3+2\ge x+1\forall x>0\)

\(\Leftrightarrow x^4-x^3-x+1\ge0\Leftrightarrow\left(x-1\right)^2\left(x^2+x+1\right)\ge0\) ( đúng )

Do đó: \(VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\) \(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)

Dấu "=" \(\Leftrightarrow a=b=c=1\)

24 tháng 2 2017

a, Có: \(\hept{\begin{cases}\frac{a}{ab+a+1}=\frac{a}{ab+a+abc}=\frac{1}{bc+b+1}\\\frac{a}{ab+a+1}=\frac{ac}{abc+ac+c}=\frac{ac}{ac+c+1}\end{cases}}\)

Tương tự cho 2 phân số còn lại sau đó cộng vế theo vế ta được:

\(3S=\frac{ab+a+1}{ab+a+1}+\frac{bc+b+1}{bc+b+1}+\frac{ca+c+1}{ca+c+1}=3\Leftrightarrow S=1\)

2, Chú ý: a+b+c=0 và a+b=-c

Xét: \(A=a^4+b^4+c^4=\left(a^2+b^2\right)^2+c^2-2a^2b^2=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Mà: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)

\(a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\left(ab+bc+ca\right)^2\)

Vậy thay 2 biểu thức trên vào ta được: ĐPCM

c) Ta có: \(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)

Do x,y>0 => x+y+3>x-y-1

Vậy pt <=> \(\hept{\begin{cases}x-y-1=1\\x+y+3=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=2\\x+y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)

Vậy (x,y)=(3,1)

23 tháng 2 2017

câu a bổ sung : Biểu thức =1

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

12 tháng 6 2020

Cách 1:

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)

Tương tự:\(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right);\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\)

Tương tự cộng vế theo vế có đpcm

Cách 2:

Áp dụng Cauchy Schwarz ta dễ có:

\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+a+1\right)+1}\le\frac{1}{16}\left(\frac{3^2}{ab+a+1}+\frac{1}{1}\right)=\frac{1}{16}\left(\frac{9}{ab+a+1}+1\right)\)

Tương tự:

\(\frac{1}{bc+b+2}\le\frac{1}{16}\left(\frac{9}{bc+b+1}+1\right);\frac{1}{ca+c+2}\le\frac{1}{16}\left(\frac{9}{ca+c+1}+1\right)\)

Cộng lại:

\(LHS\le\frac{9}{16}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)+\frac{3}{16}\)

Mà \(abc=1\) nên theo bổ đề quen thuộc ta có được đẳng thức sau luôn đúng:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\)

Khi đó ta có được đpcm

12 tháng 6 2020

Vừa nghĩ ra cách này khá là oke gửi đến các bạn :))

Nháp:

Ta đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{v}{w};\frac{w}{u}\right)\) thì ta có được:

\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{v}{w}+\frac{u}{v}+2}=\frac{vw}{uv+uw+2vw}\) đến đây ta chưa được gì  cả nên nghĩ đến hướng đi khác

Để ý rằng ta làm tử và mẫu khử nhau rồi tạo ra phân thức mới rồi nhân ngược lên ta được tử số có 2 thừa số nhân lại với nhau

Ta cần tạo ra ít mẫu nhất có thể để bớt sự phức tạp. Mà ta lại có:

\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{w}{u}+\frac{u}{v}+2}=\frac{v}{w+u+2v}\)

Đến đây rõ ràng đã bớt sự phức tạp. Khi đó ta có lời giải như sau:

Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{w}{u};\frac{v}{w}\right)\)

Ta có được 

\(LHS=\frac{v}{w+u+2v}+\frac{w}{u+v+2w}+\frac{u}{v+w+2u}\)

\(=3-\left(\frac{u+v+w}{w+u+2v}+\frac{u+v+w}{u+v+2w}+\frac{u+v+w}{v+w+2u}\right)\)

\(=3-\left(u+v+w\right)\left(\frac{1}{u+w+2v}+\frac{1}{u+v+2w}+\frac{1}{v+w+2u}\right)\)

\(\le3-\left(u+v+w\right)\cdot\frac{9}{4\left(u+v+w\right)}=\frac{3}{4}\)

Đẳng thức xảy ra tại a=b=c=1