Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(2a^2+16ab+7b^2=\left(2a+3b\right)^2-2\left(a-b\right)^2\le\left(2a+3b\right)^2\)
=> \(P\ge\frac{25a^2}{2a+3b}+\frac{25b^2}{2b+3c}+\frac{c^2\left(a+3\right)}{a}\)
Áp dụng bất đẳng thức cosi ta có
\(\frac{25a^2}{2a+3b}+2a+3b\ge10a\)
\(\frac{25b^2}{2b+3c}+2b+3c\ge10b\)
\(\frac{c^2\left(a+3\right)}{a}=\left(c^2+1\right)+(\frac{3c^2}{a}+3a)-3a-1\ge2c+6c-3a-1=8c-3a-1\)
Khi đó
\(P\ge\left(10a-2a-3b\right)+\left(10b-2b-3c\right)+\left(8c-3a-1\right)\)
=> \(P\ge5\left(a+b+c\right)-1=14\)
Vậy \(MinP=14\)khi a=b=c=1
Con ma xanh đập 1 phát chết, con ma đỏ đập 2 phát thì chết. Làm sao chỉ với 2 lần đập mà chết cả 2 con?
Bài 2 :
Ta có :
\(2a^2+16ab+7b^2=\left(2a+3b\right)^2-2\left(a-b\right)^2\le\left(2a+3b\right)^2\)
\(\Rightarrow P\ge\frac{25a^2}{2a+3b}+\frac{25b^2}{2b+3c}+\frac{c^2\left(a+3\right)}{a}\)
Áp dụng BĐT Cô - si ta có :
\(\frac{25a^2}{2a+3b}+2a+3b\ge10a\)
\(\frac{25b^2}{2b+3c}+2b+3c\ge10b\)
\(\frac{c^2\left(a+3\right)}{a}=\left(c^2+1\right)+\left(\frac{3c^2}{a}+3a\right)-3a-1\ge2c+6c-3a-1=8c-3a-1\)
Khi đó :
\(P\ge\left(10-2a-3b\right)+\left(10b-2b-3c\right)+\left(8c-3a-1\right)\)
\(\Rightarrow P\ge5\left(a+b+c\right)-1=14\)
Vậy \(MinP=14\) khi a=b=c=1
Ta có: \(4ab\le2a^2+2b^2\)
=> \(\sqrt{2a^2+7b^2+16ab}\le\sqrt{4a^2+9b^2+12ab}=\sqrt{\left(2a+3b\right)^2}=2a+3b\)
=> \(\frac{a^2}{\sqrt{2a^2+7b^2+16ab}}\ge\frac{a^2}{2a+3b}\)
Chứng minh tương tự
=> \(T\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)
Áp dụng bđt bunhia dạng phân thức
=> \(T\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=1\)
=> \(MinT=1\)xảy ra khi a=b=c=5/3
1.\(5\sqrt{a}+6\sqrt{a.\frac{1}{4}}-\sqrt{a^2.\frac{4}{a}}+\sqrt{5}=5\sqrt{a}+6.\frac{1}{2}\sqrt{a}-2\sqrt{a}\)+\(\sqrt{5}\)
bạn tự làm nốt các câu này và làm tương tự các câu kia nhé!!Nếu khó chỗ nào hãy nhắn tin cho mk!! hihi
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:
Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)
khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)
Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)
Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$
\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)
\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)
Ta có: \(P=\frac{25a^2}{\sqrt{2a^2+16ab+7b^2}}+\frac{25b^2}{\sqrt{2b^2+16bc+7c^2}}+\frac{c^2\left(3+a\right)}{a}\)\(=\frac{25a^2}{\sqrt{\left(2a+3b\right)^2-2\left(a-b\right)^2}}+\frac{25b^2}{\sqrt{\left(2b+3c\right)^2-2\left(b-c\right)^2}}+\frac{c^2\left(3+a\right)}{a}\)\(\ge\frac{25a^2}{2a+3b}+\frac{25b^2}{2b+3c}+\frac{c^2\left(3+a\right)}{a}\)
Áp dụng bất đẳng thức AM - GM, ta có: \(\frac{25a^2}{2a+3b}+\left(2a+3b\right)\ge2\sqrt{\frac{25a^2}{2a+3b}.\left(2a+3b\right)}=10a\Rightarrow\frac{25a^2}{2a+3b}\ge8a-3b\)(1)
\(\frac{25b^2}{2b+3c}+\left(2b+3c\right)\ge2\sqrt{\frac{25b^2}{2b+3c}.\left(2b+3c\right)}=10b\Rightarrow\frac{25b^2}{2b+3c}\ge8b-3c\)(2)
\(\frac{c^2\left(3+a\right)}{a}=\frac{3c^2}{a}+c^2=\left(\frac{3c^2}{a}+3a\right)+\left(c^2+1\right)-3a-1\)\(\ge2\sqrt{\frac{3c^2}{a}.3a}+2c-3a-1=8c-3a-1\)(3)
Cộng theo vế ba bất đẳng thức (1), (2), (3), ta được: \(\frac{25a^2}{2a+3b}+\frac{25b^2}{2b+3c}+\frac{c^2\left(3+a\right)}{a}\ge5\left(a+b+c\right)-1=14\)
Vậy \(P\ge14\)
Đẳng thức xảy ra khi a = b = c = 1