Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(P=\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ac}}{b+2\sqrt{ac}}+\frac{\sqrt{ab}}{c+2\sqrt{ab}}\le\frac{\frac{1}{2}\left(b+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+c\right)}{a+b+c}+\frac{\frac{1}{2}\left(a+b\right)}{a+b+c}\)
\(\Rightarrow P\le\frac{a+b+c}{a+b+c}=1\)
=> GTLN của P là 1 khi a=b=c
Ta có:\(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a\left(a+b\right)+c\left(a+b\right)}}\)
\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) (Áp dụng BĐT AM-GM)
Tương tự với hai BĐT còn lại và cộng theo vế ta thu được đpcm.
\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)
Bạn làm tương tự nha
\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
a)Áp dụng BĐT AM-GM ta có
\(\frac{ab\sqrt{ab}}{a+b}\le\frac{ab\sqrt{ab}}{2\sqrt{ab}}=\frac{ab}{2}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{bc\sqrt{bc}}{b+c}\le\frac{bc}{2};\frac{ac\sqrt{ac}}{a+c}\le\frac{ac}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=Σ\frac{ab\sqrt{ab}}{a+b}\le\frac{ab+bc+ca}{2}=VP\)
Khi \(a=b=c\)
b)Áp dụng tiếp AM-GM:
\(b\sqrt{a-1}\le\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}\)
\(a\sqrt{b-1}\le\frac{a\left(b-1+1\right)}{2}=\frac{ab}{2}\)
Cộng theo vế 2 BĐT trên ta có:
\(VT=b\sqrt{a-1}+a\sqrt{b-1}\le ab=VP\)
Khi \(a=b=1\)
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c^2+ab+bc+ca}}\)
\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự cho 2 BĐT còn lại r` cộng vào nhé