Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\).
Tương tự ta có: \(\frac{1}{b+1}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\), \(\frac{1}{c+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\).
Nhân 3 bất đẳng thức trên theo vế ta được:
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Leftrightarrow abc\le\frac{1}{8}\).
\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)
\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)
mik ví dụ 1 biểu thức nha
a(a+b+c)+bc/b+c=a^2+ab+ac+bc/b+c=(a+c)(a+b)/b+c
tương tự với mấy biểu thức còn lại
Ta có
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Rightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Rightarrow\frac{1}{1+a}\ge\frac{1+b-1}{1+b}+\frac{1+c-1}{1+c}\)
\(\Rightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\le2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)( nhỏ hơn vậy do bất đẳng thức Cosy với 2 số)
tương tư ta chứng minh được
\(\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
Nhân vế theo vế của 3 bất đẳng thức vừa chứng mình được
\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}.2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}.2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)
\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}\)
\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc.\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}:\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc\)
\(\Rightarrow\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc\)
\(\Rightarrow1\ge8abc\Rightarrow\frac{1}{8}\ge abc\)
Ủng hộ cho mình 1 cái T I C K nha . Cảm ơn bạn rất nhiều
____________________________CHÚC BẠN HỌC TỐT NHA ________________________________
Ta có :\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\)\(>=2ab+2b+2=2\left(ab+b+1\right)\)
tương tự ta được \(b^2+2c^2+3>=2\left(bc+c+1\right)\)
\(c^2+2a^2+3>=2\left(ac+a+1\right)\)
theo đề bài abc=1
=> \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\)=\(\frac{1}{ab+b+1}+\frac{ab}{b+ab+1}+\frac{b}{ab+b+1}\)=1
=> VT<=1/2
Dấu bằng khi a=b=c=1
Ta có :$a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2$a2+2b2+3=(a2+b2)+(b2+1)+2$>=2ab+2b+2=2\left(ab+b+1\right)$>=2ab+2b+2=2(ab+b+1)
tương tự ta được $b^2+2c^2+3>=2\left(bc+c+1\right)$b2+2c2+3>=2(bc+c+1)
$c^2+2a^2+3>=2\left(ac+a+1\right)$c2+2a2+3>=2(ac+a+1)
theo đề bài abc=1
=> $\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}$1ab+b+1 +1bc+c+1 +1ca+a+1 =$\frac{1}{ab+b+1}+\frac{ab}{b+ab+1}+\frac{b}{ab+b+1}$1ab+b+1 +abb+ab+1 +bab+b+1 =1
=> VT<=1/2
Dấu bằng khi a=b=c=1
Từ đề bài suy ra \(\frac{1}{a+1}\ge\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)
Tương tự với hai bđt kia rồi nhân theo vế suy ra
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
Do a, b, c>0 nên (a+1)(b+1)(c+1) > 0 suy ra:
\(1\ge8abc\Leftrightarrow abc\le\frac{1}{8}\left(đpcm\right)\)
Đẳng thức xảy ra khi a = b = c = 1/2