K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

Ez to prove \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)

\(\Leftrightarrow\frac{6054}{3}\ge ab+bc+ca\Leftrightarrow ab+ca+bc\le2018\)

Khi đó: \(\frac{2a}{\sqrt{a^2+2018}}\le\frac{2a}{\sqrt{a^2+ab+bc+ca}}=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+b}+\frac{a}{a+c}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}=3\)

1 tháng 1 2018

Áp dụng bđt bu nhi a, ta có 

\(P^2\le3\left(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\right)\)

Áp dụng bđt cô si, ta có 

\(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

tương tự với mấy cái kia =>\(P^2\le\frac{3}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+a}+\frac{1}{ca+a+1}\right)\)

mà với abc =1, thì bạn sẽ chứng minh được \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)

phân thức thứ 1 để nguyê, phân thức thứ 2 nhân với ab, phân thức thứ 3 nhân với b, rồi chỗ napf có abc thì thay abc=1

thì bạn sẽ chứng minh được cái kia=1 

=>\(P\le\sqrt{\frac{3}{2}}\)

dâu = xảy ra <=>a=b=c=1

4 tháng 7 2020

Dễ thấy theo AM - GM :

\(\frac{1}{\sqrt{a^2+2b^2+3}}=\frac{1}{\sqrt{\left(a^2+b\right)+\left(b^2+1\right)+2}}\le\frac{1}{\sqrt{2ab+2b+2}}\)

\(\le\frac{\sqrt{6}}{4}\left(\frac{1}{ab+b+1}+\frac{1}{3}\right)\)

Tương tự:

\(\frac{1}{\sqrt{b^2+2c^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{bc+c+1}+\frac{1}{3}\right);\frac{1}{\sqrt{c^2+2a^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{ca+a^2+1}+\frac{1}{3}\right)\)

Cộng lại ta sẽ có đpcm

Vì dễ thấy \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\) với abc=1

NV
1 tháng 5 2021

\(a+b+c=\sqrt{6063}\Leftrightarrow\dfrac{a}{\sqrt{2021}}+\dfrac{b}{\sqrt{2021}}+\dfrac{c}{\sqrt{2021}}=\sqrt{3}\)

Đặt \(\left(\dfrac{a}{\sqrt{2021}};\dfrac{b}{\sqrt{2021}};\dfrac{c}{\sqrt{2021}}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{3}\)

\(P=\dfrac{2x}{\sqrt{2x^2+1}}+\dfrac{2y}{\sqrt{2y^2+1}}+\dfrac{2z}{\sqrt{2z^2+1}}\)

Ta có đánh giá:

\(\dfrac{x}{\sqrt{2x^2+1}}\le\dfrac{3\sqrt{15}x+2\sqrt{5}}{25}\)

Thật vậy, BĐT tương đương:

\(\left(\sqrt{3}x-1\right)^2\left(9x^2+10\sqrt{3}x+2\right)\ge0\) (luôn đúng)

Tương tự và cộng lại:

\(P\le\dfrac{6\sqrt{15}\left(x+y+z\right)+12\sqrt{5}}{25}=\dfrac{6\sqrt{5}}{5}\)

\(P=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(c+a\right)\left(a+b\right)}}+\frac{ca}{\sqrt{\left(b+c\right)\left(a+b\right)}}\)

thử dùng cô si đi

20 tháng 8 2017

sửa ab thành a2 mới làm như Thành được nhé :v

Bài 1:a) Cho biểu thức A= \(\frac{5\sqrt{x}+4}{x-5\sqrt{x}+4}-\frac{3-2\sqrt{x}}{\sqrt{x}-4}+\frac{\sqrt{x}+2}{\sqrt{x}-1}\)Tìm tất cả các giá trị của x để A < 1b) Cho hai số dương a,b thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2018}\)Chứng minh:  \(\sqrt{a-2018}+\sqrt{b-2018}=\sqrt{a+b}\)Bài 2:Giải phương trình: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)Bài 3: a) Cho ba số nguyên a,b,c thỏa mãn bất điều kiện 0 < a,b,c < 1. Chứng...
Đọc tiếp

Bài 1:

a) Cho biểu thức A= \(\frac{5\sqrt{x}+4}{x-5\sqrt{x}+4}-\frac{3-2\sqrt{x}}{\sqrt{x}-4}+\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

Tìm tất cả các giá trị của x để A < 1

b) Cho hai số dương a,b thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2018}\)Chứng minh:

  \(\sqrt{a-2018}+\sqrt{b-2018}=\sqrt{a+b}\)

Bài 2:

Giải phương trình: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)

Bài 3: 

a) Cho ba số nguyên a,b,c thỏa mãn bất điều kiện 0 < a,b,c < 1. Chứng minh:

\(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)

b) Tìm tất cả bộ ba số nguyên tố (a;b;c) đôi một khác nhau thỏa mãn:

\(20abc< 30\left(ab+bc+ca\right)< 21abc\)

Bài 4:  Cho tam giác ABC có trung tuyến AM. Vẽ đường thẳng d cắt các cạnh AB, AC, và AM theo thứ tự E, F, N.

a) Chứng minh \(\frac{AB}{AE}+\frac{AC}{AF}=\frac{2AM}{AN}\)

b) Giả sử d // BC. Trên tia đối của tia FB lấy điểm K. Gọi P là giao điểm của KN và AB, Q là giao điểm của KM và AC. Chứng minh PQ // BC.

 

 

 

 

 

 

1
3 tháng 8 2020

huyen

29 tháng 5 2018

Ta có: \(5a^2+2ab+2b^2=4a^2+2ab+b^2+\left(a^2+b^2\right)\ge4a^2+2ab+b^2+2ab=\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Lại có: \(\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)\)

Tương tự cộng lại ta có: \(VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Theo BĐT Bunhiacopxki ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{3}\)

\(\Rightarrow VT\le\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\)

Dấu = xảy ra khi \(a=b=c=\sqrt{3}\)

14 tháng 8 2018

Ta có \(\frac{\sqrt{ab^2c^3}}{b+c}\le\frac{\sqrt{ab^2c^3}}{2\sqrt{bc}}=\frac{1}{2}.\sqrt{ac.bc}\)

Mà \(\frac{1}{2}\sqrt{ac.cb}\le\frac{1}{4}\left(ac+cb\right)\)\(\Rightarrow\frac{\sqrt{ab^2c^3}}{b+c}\le\frac{1}{4}\left(ac+bc\right)\)

Tương tự cộng lại, ta có 

\(\frac{\sqrt{ab^2c^3}}{b+c}+\frac{\sqrt{bc^2a^3}}{c+a}+\frac{\sqrt{ca^2b^3}}{a+b}\le\frac{1}{2}\left(ab+bc+ca\right)\)

Mà \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\Rightarrow\frac{\sqrt{ab^2c^3}}{b+c}+...\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c=1

^.^