Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là bài IMO 2001 và không cần điều kiện \(a+b+c=1\)
Áp dụng Holder:
\(P.P.\left[a\left(a^2+8bc\right)+b\left(b^2+8ac\right)+c\left(c^2+8ab\right)\right]\ge\left(a+b+c\right)^3\)
\(\Leftrightarrow P^2\ge\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}=\dfrac{a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a^3+b^3+c^3+24abc}\)
\(\Rightarrow P^2\ge\dfrac{a^3+b^3+c^3+3.2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}{a^3+b^3+c^3+24abc}=1\)
\(\Rightarrow P\ge1\)
\(M\ge\dfrac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{b}+\sqrt{c}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{c}+\sqrt{a}\right)^2}}{2}\)
\(M\ge\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
Ta có: \(2\left(b^2+bc+c^2\right)=2b^2+2c^2+2bc\le2b^2+2c^2+b^2+c^2=3\left(b^2+c^2\right)\Rightarrow b^2+c^2\le3-a^2\Rightarrow a^2+b^2+c^2\le3\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\).
Áp dụng bđt Schwars ta có:
\(T\ge a+b+c+\dfrac{18}{a+b+c}=\left(a+b+c+\dfrac{9}{a+b+c}\right)+\dfrac{9}{a+b+c}\ge2\sqrt{9}+\dfrac{9}{3}=9\).
Đẳng thức xảy ra khi a = b = c = 1.