Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
Đặt \(A=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)
Áp dụng bất đẳng thức cô-si, ta có:
\(a^2+b^2\ge2.\sqrt{a^2.b^2}=>a^2+b^2\ge2ab\)
\(b^2+1\ge2.\sqrt{b^2.1}=>b^2+1\ge2b\)
=>\(a^2+b^2+b^2+1\ge2ab+2b\)
=>\(a^2+2b^2+1+2\ge2ab+2b+2\)
=>\(a^2+2b^2+3\ge2ab+2b+2\)
=>\(a^2+2b^2+3\ge2\left(ab+b+1\right)\)
=>\(\frac{1}{a^2+2b^2+3}\le\frac{1}{2.\left(ab+b+1\right)}\)
Chứng minh tương tự, ta có:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2.\left(bc+c+1\right)}\)
\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2.\left(ca+a+1\right)}\)
=>\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2.\left(ab+b+1\right)}+\frac{1}{2.\left(bc+c+1\right)}+\frac{1}{2.\left(ca+a+1\right)}\)
=>\(A\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ca+a+1}\)
=>\(A\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
=>\(A\le\frac{1}{2}.\left(\frac{ca}{ca.\left(ab+b+1\right)}+\frac{a}{a.\left(bc+c+1\right)}+\frac{1}{ca+a+1}\right)\)
=>\(A\le\frac{1}{2}.\left(\frac{ca}{abc.c+abc+ca}+\frac{a}{abc+ca+a}+\frac{1}{ca+a+1}\right)\)
Vì abc=1(theo giả thiết)
=>\(A\le\frac{1}{2}.\left(\frac{ca}{c+1+ca}+\frac{a}{1+ca+a}+\frac{1}{ca+a+1}\right)\)
=>\(A\le\frac{1}{2}.\left(\frac{ca}{ca+a+1}+\frac{a}{ca+a+1}+\frac{1}{ca+a+1}\right)\)
=>\(A\le\frac{1}{2}.\frac{ca+a+1}{ca+a+1}\)
=>\(A\le\frac{1}{2}.1\)
=>\(A\le\frac{1}{2}\)
=>\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
=>ĐPCM
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc=0\)
\(\Rightarrow ab^2+ac^2+bc^2+ba^2+c\left(a+b\right)^2=0\)
\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)
\(\Rightarrow\left(a+b\right)\left(ab+c^2+ca+cb\right)=0\)
\(\Rightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
Từ đó a = -b hoặc b = -c hoặc c = -a
Nếu a = -b mà \(a^3+b^3+c^3=1\Rightarrow\left(-b\right)^3+b^3+c^3=1\Rightarrow c^3=1\Rightarrow c=1\)
Khi đó: \(A=\frac{1}{\left(-b\right)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{1^{2017}}=0+1=1\)
Tương tự với các trường hợp b = -c và a = -c, ta tính được A = 1
Đề đúng : Cho a,b,c > 0 và \(a+b+c\le1\)
CMR : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)
Đặt \(x=a^2+2bc,y=b^2+2ac,z=c^2+2ab\)
Áp dụng bđt Bunhiacopxki , ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(\sqrt{\frac{1}{x}.x}+\sqrt{\frac{1}{y}.y}+\sqrt{\frac{1}{z}.z}\right)^2=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)
Ta thấy: \(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)
Sử dụng Cosi 3 số ta suy ra
\(VT\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)
\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\) (Đpcm)
Đẳng thức xảy ra khi\(\begin{cases}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{cases}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\)
\(\left(1+\frac{b^2+c^2-a^2}{2bc}\right).\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}.\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
= \(\left(1+\frac{\left(b+c\right)^2-2bc-a^2}{2bc}\right).\frac{\frac{a+b+c}{b+c}}{\frac{b+c-a}{b+c}}.\frac{\left(b+c\right)^2-2bc-\left(b-c\right)^2}{a+b+c}\)
= \(\left(1+\frac{\left(b+c-a\right)\left(b+c+a\right)-2bc}{2bc}\right).\frac{a+b+c}{b+c-a}.\frac{\left(b+c-b+c\right)\left(b+c+b-c\right)-2bc}{a+b+c}\)
= \(\left(1+\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}-1\right).\frac{a+b+c}{b+c-a}.\frac{4bc-2bc}{a+b+c}\)
= \(\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}.\frac{2bc}{b+c-a}\)
= \(\frac{\left(b+c-a\right)\left(b+c+a\right)}{b+c-a}\)
= \(b+c+a\)
a+b+c=0=> a2-b2-c2=2bc,b2-c2-a2=2ac,c2+a2-b2=-2ac,c2-a2-b2=2ab
=>\(P=\frac{a}{c}.\frac{2bc}{2ac}.\frac{-2ac}{2ab}=-1\)
a+b+c=0 <=> a+b=-c; b+c=-a;c+a=-b
\(\frac{a^2-b^2-c^2}{b^2-c^2-a^2}=\frac{\left(a-c\right)\left(a+c\right)-b^2}{\left(b-a\right)\left(b+a\right)-c^2}=\frac{\left(a-c\right)\left(-b\right)-b^2}{\left(b-a\right)\left(-c\right)-c^2}=\frac{b\left(c-a-b\right)}{c\left(a-b-c\right)}\)
\(=\frac{b\left[c-\left(a+b\right)\right]}{c\left[a-\left(b+c\right)\right]}=\frac{b\left[c-\left(-c\right)\right]}{c\left[a-\left(-a\right)\right]}=\frac{b.2c}{c.2a}=\frac{b}{a}\)
***
\(\frac{c^2+a^2-b^2}{c^2-a^2-b^2}=\frac{\left(c-b\right)\left(c+b\right)+a^2}{\left(c-b\right)\left(c+b\right)-a^2}=\frac{\left(c-b\right)\left(-a\right)+a^2}{\left(c-b\right)\left(-a\right)-a^2}=\frac{a\left(a+b-c\right)}{a\left(b-c-a\right)}\)
\(=\frac{a+b-c}{b-\left(c+a\right)}=\frac{-c-c}{b-\left(-b\right)}=\frac{-2c}{2b}=\frac{-c}{b}\)
\(P=\frac{a}{c}.\frac{a^2-b^2-c^2}{b^2-c^2-a^2}.\frac{c^2+a^2-b^2}{c^2-a^2-b^2}=\frac{a}{c}.\frac{b}{a}.\frac{-c}{b}=-1\)
Áp dụng BĐT Cauchy, ta có :
\(a^2+b^2\ge2ab\)
\(b^2+1\ge2b\)
\(\Rightarrow\) \(a^2+2b^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\) \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\) ( 1 )
Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\) ( 2 )
\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\) ( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) cộng vế theo vế, ta có :
\(VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
Đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}=\frac{ac}{ab.ac+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)
\(=\frac{ac+a+1}{ac+a+1}=1\)
\(\Rightarrow\) \(VT\le\frac{1}{2}.1=\frac{1}{2}\)
\(\Rightarrow\) đpcm