Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)
Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)
Ta cần c/m: \(A\ge\frac{3}{2}\)
Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)
Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)
\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)
\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)
\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)
\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)
\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)
\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)
Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)
Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:
\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)
Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ giùm
Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc Bunhia nên phải tách nó ra
Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)
\(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)
\(=x-\frac{\sqrt{z}}{2}\)
\(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))
Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)
\(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)
Cộng từng vế của các bđt trên lại được
\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)
\(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)
Từ điều kiện \(xy+yz+zx=3xyz\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được
\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow x+y+z\ge3\)
Quay trở lại với A
\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)
Vậy .............
Bài 4:
Ta có:Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên a+b-c>0,a+c-b>0,b+c-a>0.Do đó,áp dụng bất thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y là các số dương
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{\left(a+b-c\right)+\left(a+c-b\right)}=\frac{4}{2a}=\frac{2}{a}\\\frac{1}{a+b-c+}+\frac{1}{b+c-a}\ge\frac{4}{\left(a+b-c\right)+\left(b+c-a\right)}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{\left(b+c-a\right)+\left(a+c-b\right)}=\frac{4}{2c}=\frac{2}{c}\end{matrix}\right.\)
\(\Rightarrow2\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Mà \(\left\{{}\begin{matrix}b+c-a=\left(a+b+c\right)-2a=2p-2a=2\left(p-a\right)\\a+c-b=\left(a+b+c\right)-2b=2p-2b=2\left(p-b\right)\\a+b-c=\left(a+b+c\right)-2c=2p-2c=2\left(p-c\right)\end{matrix}\right.\)
\(\Rightarrow2\left[\left(\frac{1}{2\left(p-a\right)}+\frac{1}{2\left(p-b\right)}+\frac{1}{2\left(p-c\right)}\right)\right]\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(đpcm\right)\)
Dấu "=" xảy ra khi và chỉ khi a=b=c
5.
\(\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\ge\frac{2x}{x+y+z}\)
Tương tự: \(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z}\) ; \(\sqrt{\frac{z}{x+y}}\ge\frac{2z}{x+y+z}\)
Cộng vế với vế:
\(VT\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Dấu "=" ko xảy ra nên \(VT>2\)