Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cho 2 số dương:
\(\frac{1}{\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Xét: c + 1 = c + a + b + c
\(\frac{ab}{\left(c+1\right)}\le\frac{ab}{4}.\left[\frac{1}{\left(a+c\right)}+\frac{1}{\left(b+c\right)}\right]\)
Tương tự:
\(\frac{bc}{\left(a+1\right)}\le\frac{bc}{4}.\left[\frac{1}{\left(a+c\right)}+\frac{1}{\left(b+a\right)}\right]\)
\(\frac{ca}{\left(b+1\right)}\le\frac{ac}{4}.\left[\frac{1}{\left(a+b\right)}+\frac{1}{\left(c+b\right)}\right]\)
Cộng lại:
\(\frac{ac}{\left(c+1\right)}+\frac{bc}{\left(a+1\right)}+\frac{ca}{\left(b+1\right)}\le\frac{1}{4}\left\{\frac{ab}{\left(a+c\right)}+\frac{ab}{\left(b+c\right)}+\frac{bc}{\left(a+c\right)}+\frac{bc}{\left(a+c\right)}+\frac{ac}{\left(a+b\right)}\right\}\)
Cộng lại + rút gọn mẫu số
\(\frac{ab}{\left(c+1\right)}+\frac{bc}{\left(a+1\right)}+\frac{ca}{b+1}\le\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu '=' xảy ra khi a = b = c
P/s: Sai đâu bạn sửa nhé!
#)Tham khảo trong hai link này nhé :
Chứng minh: $\frac{1}{{4 - ab}} + \frac{1}{{4 - bc}} + \frac{1}{{4 - ca}} \le ...https://diendantoanhoc.net › ... › Toán Trung học Cơ sở › Bất đẳng thức và cực trị
Chứng minh rằng: $\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\leq 1 ...https://diendantoanhoc.net › ... › Toán Trung học Cơ sở › Bất đẳng thức và cực trị
P/s : Vô thống kê hỏi đáp ms dùng đc link nhé !
Ta có: \(a^4+b^4+c^4=3\Rightarrow0\le a^4;b^4;c^4\le3\Rightarrow0\le a;b;c\le\sqrt[4]{3}\)
=> \(ab,bc,ac\le\sqrt[4]{9}\)
Xét: \(\frac{18}{4-x}\le x^2+5,\forall0\le x\le\sqrt[4]{9}\)
<=> \(18\le\left(x^2+5\right)\left(4-x\right)\)
<=> \(\left(x-1\right)^2\left(2-x\right)\ge0\)luôn đúng với \(\forall0\le x\le\sqrt[4]{9}\)
Như vậy:
\(\frac{18}{4-ab}+\frac{18}{4-bc}+\frac{18}{4-ac}\le\left(ab\right)^2+5+\left(bc\right)^2+5+\left(ac\right)^2+5\)
\(=\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+15\le\frac{a^4+b^4}{2}+\frac{b^4+c^4}{2}+\frac{a^4+c^4}{2}+15\)
\(=a^4+b^4+c^4+15=18\)
=> \(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ac}\le1\)
"=" xảy ra <=> a=b=c=1