Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)
\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng bđt Cauchy , ta có :
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
Dấu "=" xảy ra khi a = b = c = 1
Vậy Min P = 8 <=> a = b = c = 1
S = a+b+c + (1/a + 1/b + 1/c)
>= (a+b+c) + 9/a+b+c
= [ (a+b+c) + 9/4.(a+b+c) ] + 27/4.(a+b+c)
>= \(2\sqrt{\left(a+b+c\right).\frac{9}{4.\left(a+b+c\right)}}\) + 27/(4.3/2)
= 3 + 9/2
= 15/2
Dấu "=" xảy ra <=> a=b=c=1/2
Vậy ......
Tk mk nha
Áp dụng BĐT Cauchy ta có:
\(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)
\(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)
\(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)
Dấu "=" xảy ra <=> \(a=b=c=1\)
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\) \(\ge\)\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8.\sqrt{abc}=8\)
Vậy Min P = 8 <=> a = b = c = 1
Cauchy :
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8.\sqrt{abc}=8\)
Đẳng thức xảy ra <=> a = b = c = 1
Đường ....... sai rồi :v
Áp dụng bđt Cauchy - Schwarz dạng engel (full name nhé) , ta có
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=\frac{9}{3+a+b+c}\ge\frac{9}{3+3}=\frac{3}{2}\)
Đẳng thức xảy ra <=> \(a=b=c=1\)
Lời giải:
Áp dụng BĐT SVac.xơ: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}\)
\(\Rightarrow A\geq a+b+c+\frac{9}{a+b+c}\)
Áp dụng BĐT Cô -si cho các số dương:
\((a+b+c)+\frac{9}{4(a+b+c)}\geq 2\sqrt{\frac{9}{4}}=3\)
\(a+b+c\leq \frac{3}{2}\Rightarrow \frac{27}{4(a+b+c)}\geq \frac{27}{4.\frac{3}{2}}=\frac{9}{2}\)
Cộng theo vế các BĐT trên:
\(\Rightarrow A\geq a+b+c+\frac{9}{a+b+c}\ge 3+\frac{9}{2}=\frac{15}{2}\)
Vậy \(A_{\min}=\frac{15}{2}\Leftrightarrow a=b=c=\frac{1}{2}\)
\(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
\(A=\Sigma\left(a-\frac{ab^2}{1+b^2}\right)\)
Áp dụng bất đẳng thức Cô-si :
\(A\ge\Sigma\left(a-\frac{ab^2}{2b}\right)=\Sigma\left(a-\frac{ab}{2}\right)\)
\(=\left(a+b+c\right)-\left(\frac{ab+bc+ca}{2}\right)\)\(\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
\(\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Dễ có:\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\le\left(\frac{3+a+b+c}{3}\right)^3\le8\)
Khi đó \(B\ge\frac{3}{2}\)
Đẳng thức xảy ra tại a=b=c=1