K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp 

nên 2b+c-2c-a = 2b-a-c chia hết cho 3

lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3

tương tự ta có c-a và a-b chia hết cho 3

cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

Đặt \(\left\{\begin{matrix} 2a+b=x^2\\ 2b+c=y^2\\ 2c+a=z^2\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2=3(a+b+c)\vdots 3\)

Vì một trong 3 số chính phương kể trên chia hết cho 3 nên giả sử \(2c+a=z^2\vdots 3\)

\(\Rightarrow x^2+y^2\vdots 3\) (*)

Ta biết rằng một số chính phương khi chia 3 có dư 0 hoặc 1

Do đó Nếu \(x^2,y^2\) đều không chia hết cho 3 thì \(x^2+y^2\) chia 3 có thể có dư là 1,2 (trái với (*))

Từ đây suy ra \(x^2\vdots 3; y^2\vdots 3\).

Vậy \(x^2, y^2,z^2\vdots 3\) (1)

\(\Rightarrow x,y,z\vdots 3\) (do 3 là số nguyên tố)

\(\Rightarrow x^2, y^2,z^2\vdots 9\)

\(\Rightarrow 3(a+b+c)=x^2+y^2+z^2\vdots 9\Rightarrow a+b+c\vdots 3\) (2)

Từ (1);(2) suy ra:

\(\left\{\begin{matrix} x^2-(a+b+c)\vdots 3\\ y^2-(a+b+c)\vdots 3\\ z^2-(a+b+c)\vdots 3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a-c\vdots 3\\ b-a\vdots 3\\ c-b\vdots 3\end{matrix}\right.\)

\(\Rightarrow (a-c)(b-a)(c-b)\vdots 27\)

\(\Leftrightarrow (a-b)(b-c)(c-a)\vdots 27\)

Ta có đpcm.

25 tháng 7 2020

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

13 tháng 7 2022

trang có câu hỏi mà ko trả lời thì như c**

 

27 tháng 7 2016

Bài 4 :

Thay x=y+5 , ta có :

a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65

=(y+5)*(y+7)+y^2-2y-2y^2-10y+65

=y^2+7y+5y+35-y^2-2y-2y^2-10y+65

= 100

Bài 5 :

A = 15x-23y

B = 2x-3y

Ta có : A-B

= ( 15x -23y)-(2x-3y)

=15x-23y-2x-3y

=13x-26y

=13x*(x-2y) chia hết cho 13 

=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại