K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE và ΔDBE có 

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔABE=ΔDBE

b: Xét ΔAEF vuông tại A và ΔDEC vuông tại D có 

EA=ED

AF=DC

Do đó: ΔAEF=ΔDEC

Suy ra: EF=EC

hay E nằm trên đường trung trực của CF(1)

Ta có: BF=BC

nên B nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BE là đường trung trực của CF

=>BE⊥CF

hay BG⊥CF

7 tháng 12 2016

?????????????????????????????????????????????????????

17 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

14 tháng 12 2022

a: Xét ΔBAE avf ΔBFE có

BA=BF

góc ABE=góc FBE

BE chung

Do đó: ΔBAE=ΔBFE

b: ΔBAE=ΔBFE

nên góc BAE=góc BFE=90 độ

=>EF vuông góc với BC

26 tháng 12 2018

Xin lỗi mình gửi nhầm nha bạn

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

BA=BE

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc ABD=góc EBD

=>BD là phân giác của góc ABE

c: Xét ΔBEM vuông tại E và ΔBAC vuôg tại A có

BE=BA

góc EBM chung

=>ΔBEM=ΔBAC

=>BM=BC

a: Xét ΔBAE và ΔBDE có

BA=BD

góc ABE=góc DBE

BE chung

=>ΔBAE=ΔBDE

b: Xét ΔBFC có

BH vừa là đường cao, vừa là phân giác

=>ΔBFC cân tại B

c: Xét ΔBAC và ΔBDF có

BA=BD

góc ABC chung

BC=BF

=>ΔBAC=ΔBDF

=>góc BDF=góc BAC=90 độ

=>D,E,F thẳng hàng

10 tháng 2 2022

e tk hen:

undefined

a) Ta có \(\widehat{BAE}=\widehat{CAE}=\widehat{\dfrac{CAB}{2}}\)

hay \(\widehat{BAE}=\widehat{FAE}\)

Xét \(\Delta ABEvà\Delta AFEcó\)

\(AB=AF\) (giả thiết )

 \(\widehat{BAE}=\widehat{FAE}\) (chứng minh trên)

\(AE\)  cạnh chung 

 \(\Rightarrow\Delta ABE=\Delta AFE\left(c-g-c\right)\)

vậy \(\Delta ABE=\Delta AFE\)

b) ta có  \(\Delta ABE=\Delta AFE\) (chứng minh câu a)

\(\Rightarrow\widehat{EBA}=\widehat{EFA}\) (2 góc tương ứng)

\(\widehat{EAB}=90độ\) \(\Rightarrow\widehat{EFA}=90độ\)

\(\Rightarrow EF\perp AC\)

vậy \(EF\perp AC\)

c)ta có  \(\Delta EAB=\Delta EFA\) (chứng minh câu a)

\(\Rightarrow EB=EF\)

Xét \(\Delta CEFvà\Delta MEBcó\)

\(EF=EB\) (chứng minh trên)

\(\widehat{CEF}=\widehat{MEB}\) (2 góc đối đỉnh )

\(CE=ME\) (giả thiết )

\(\Rightarrow\Delta CEF=\Delta MEB\left(c-g-c\right)\)

\(\Rightarrow\widehat{EBM}=\widehat{EMC}\) mà \(\widehat{EMC}=90độ\) (vì\(EF\perp AC\))

\(\Rightarrow\widehat{EBM}=90độ\) mà \(\widehat{EBA}=90độ\)

\(\Rightarrow\widehat{EBM}+\widehat{EBA}=180độ\)

\(\Rightarrow\text{B,A,M thẳng hàng}\)

vậy\(\text{B,A,M thẳng hàng}\)

 

\(\Delta ABEvà\Delta AFEcó\)\(\Rightarrow EF\perp AC\)\(\Rightarrow EF\perp AC\)

\(\Rightarrow\widehat{EBA}=\widehat{EFA}\) 

 

 

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng