Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại đây nhé.
Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath
\(a,\) M,E là trung điểm BC,AB nên ME là đtb \(\Delta ABC\)
Do đó \(ME//AC\Rightarrow ME\bot AB(AC\bot AB)\)
\(b,\) Vì E là trung điểm MH và AB nên AMBH là hbh
Mà \(MH\bot AB\) tại E nên AMBH là hình thoi
\(c,\) Để \(AMBH\) là hv thì \(\widehat{AMB}=90^0\Leftrightarrow AM\bot BC\)
Mà AM là trung tuyến ứng cạnh huyền
Vậy để \(AMBH\) là hv thì \(\Delta ABC\) vuông cân tại A
a: Xét tứ giác AECM có
N là trung điểm chung của AC và EM
nên AECM là hình bình hành
c: Để AECM là hình vuông thì góc CAM=45 độ và CM=MA
=>ΔBAC vuông cân tại C
a; Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
=>AEMF là hình chữ nhật
b: Xét ΔBAC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét tứ giác AMBN có
E là trung điẻm chung của AB và MN
MA=MB
=>AMBN là hình thoi
c: Để AMBN là hình vuông thì góc AMB=90 độ
=>góc B=45 độ
d: AM=5cm
=>AN=5cm
MN=AC=căn 10^2-8^2=6cm
\(P=\dfrac{5+5+6}{2}=8\left(cm\right)\)
\(S=\sqrt{8\cdot\left(8-5\right)\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot2\cdot3\cdot3}=4\cdot3=12\left(cm^2\right)\)
Em tham khảo tại đây nhé.
Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath
a: Xét tứ giác AIME có
\(\widehat{AIM}=\widehat{AEM}=\widehat{EAI}=90^0\)
Do đó: AIME là hình chữ nhật
b: Xét tứ giác ANCM có
I là trung điểm của AC
I là trung điểm của NM
Do đó: ANCM là hình bình hành
mà MA=MC
nên ANCM là hình thoi
c: Để AIME là hình vuông thì AI=AE
hay AB=AC
a, N; P lần lượt là trung điểm của AC; BC (gt)
=> NP là đtb của tam giác ABC (Đn)
=> NP // AB (Đl)
=> góc PNA + CAB = 180 (đl)
có góc CAB = 90 do tam giác ABC vuông tại A (gt)
=> góc PNA = 90
chứng minh tương tự với góc PMA
=> NPMA Là hình chữ nhật
b, N đối xứng với E qua M (gt)
=> M là trung điểm của NE (đn)
M là trung điểm của AB (gt)
=> ANBE là hình bình hành (dấu hiệu)