K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:

+) Áp dụng hệ thức về cạnh và đường cao trng tam giác vuông ABC với AH là đường cao ta có:

+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:

+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có:

+) Diện tích tam giác ABC với AH là đường cao ta có:

Vậy AB = 5cm, AC =  15 4 cm; AM =  25 8 cm;     S ∆ A B C = 75 8 c m 2 .

Đáp án cần chọn là: A

23 tháng 5 2021

A B C H M

Xét tam giác ABH vuông tại H, ta có:

\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)

\(\Rightarrow AB=5\left(cm\right)\)

Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:

\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)

AM là đường trung tuyến trong tam giác vuông ABC

=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)

4 tháng 4 2019

a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm

b, Tìm được  A M H ^ ≈ 73 , 74 0

c,  S A H M = 21 c m 2

17 tháng 3 2020

Hỏi đáp Toán

Theo Pytago: \(AB=\sqrt{3^2+4^2}=5\) (cm)

Áp dụng hệ thức lượng: \(AB^2=BH\cdot BC\)

\(\Rightarrow BC=\frac{AB^2}{BH}=\frac{5^2}{4}=\frac{25}{4}\) (cm)

Áp dụng Pytago: \(AC=\sqrt{BC^2-AB^2}=\sqrt{\left(\frac{25}{4}\right)^2-5^2}=\frac{15}{4}\) (cm)

Mặt khác: \(AM=\frac{BC}{2}=\frac{\frac{25}{4}}{2}=\frac{25}{8}\) (cm)

\(S_{ABC}=\frac{1}{2}\cdot AB\cdot AC=\frac{1}{2}\cdot5\cdot\frac{15}{4}=\frac{75}{8}\) (cm2)

Vậy...

\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)

BC=HB+HC=6,25(cm)

AM=BC/2=3,125(cm)

\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)

\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)

15 tháng 5 2022

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :

\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)

+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\) 

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\) 

\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :

\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)

\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)

+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :

\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)

 

 

30 tháng 9 2016

a) Chứng minh \(\Delta ABH\)đồng dạng với \(\Delta CAH\)(G.G)

\(=>\frac{BH}{AB}=\frac{AH}{AC}\) \(=>\frac{BH}{15}=\frac{3}{5}\)

\(=>BH=9\)

Mà \(AB^2=BH.BC\)

=> \(BC=\frac{15^2}{9}=25\)

=> \(HC=25-9=16\)

30 tháng 9 2016

Ta có \(AH^2=HB.HC\)

=> \(AH^4=HB^2.HC^2\)

Mà \(\begin{cases}HB^2=BE.AB\\HC^2=CF.AC\end{cases}\)

=> \(AH^4=BE.CF.AB.AC\)

Mà \(AB.AC=AH.BC\)

=> \(AH^4=BE.CF.BC.AH\)

=> đpcm