Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :
AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12
b)Xét tam giác ABE và DBE có :
Góc A=góc B(=90 độ)
BA=BD(gt)
Chung cạnh BE
suy ra tam giác ABE= BDE (c.g.c)
c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )
Suy ra BE là tia phân giác cua góc ABC
Xét tam giác BDK và BAC có :
Chung góc B
BA=BD(gt)
góc D = góc A (=90 độ)
suy ra tam giác BDK=tam giác BAC (g.c.g)
suy ra AC=DK (2 cạnh tương ứng )
( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )
a) Vì tam giác BAC vuông tại A
=> AB^2 + AC^2 = BC^2 ( đl pytago )
=> BC^2 = 5^2 + 7^2 = 74
=> BC = căn bậc 2 của 74
b)
Xét tam giác ABE; tam giác DBE có :
AB = DB ( gt)
góc ABE = góc DBE ( gt)
BE chung
=> tam giác ABE = tam giác DBE (c.g.c) - đpcm
c)
Vì tam giác ABE = tam giác DBE (câu b)
=> AE = DE
Xét tg AEF ⊥ tại A; tg DEC ⊥ tại D:
AE = DE (c/m trên)
g AEF = g DEC (đối đỉnh)
=> tg AEF = tg DEC (cgv - gn) - đpcm
=> EF = EC
d)
Do tam giác AEF = tam giác DEC (câu c)
=> AE = DE
=> E ∈ đường trung trực của AD (1)
Lại do AB = BD (gt)
=> B ∈ đường trung trực của AD (2)
Từ (1) và (2) => BE là đường trung trực của AD. - đpcm
a) Áp dụng pytago .
b) Xét t/g ABE; tg DBE:
AB = DB ( gt)
g ABE = DBE (suy từ gt)
BE chung
=> tg ABE = tg DBE (c.g.c)
c) Vì tg ABE = tg DBE (câu b)
=> AE = DE
Xét tg AEF ⊥⊥ tại A; tg DEC ⊥⊥ tại D:
AE = DE (c/m trên)
g AEF = g DEC (đối đỉnh)
=> tg AEF = tg DEC (cgv - gn)
=> EF = EC
d) Do tg AEF = tg DEC (câu c)
=> AE = DE
=> E ∈∈ đg trung trực của AD (1)
Lại do AB = BD (gt)
=> B ∈ đg trung trực của AD (2)
Từ (1) và (2) => BE là đg trung trực của AD.
- 544rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhtttttrfffffffffffffffffffffffffffffffffffrrrrrrrrrrrrrrreeeeeeeeeeeeeeeeeeeeeennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
hình tự vẽ:
xét hai tam giác vuông ABE và DBE:
ab=ad(gt); be là cạnh huyền chung
=>\(\Delta\) ABE = \(\Delta\)DBE
mình sẽ giải tiếp
a) theo đinh j lý pitago : tam giác abc vuông tại A
=> \(AB^2+AC^2=BC^2\)THAY SỐ TA ĐƯỢC \(5^2+7^2=BC^2\) TA ĐƯỢC \(74=BC^2\) =>BC =
8.6023
a. Có thể em thiếu giả thiết đọ lớn của các canhk AB, AC. Nếu có, ta dùng định lý Pi-ta-go để tính độ dài BC.
b. Ta thấy ngay tam giác ABE bằng tam giác DBE (cạnh huyền - cạnh góc vuông)
Từ đó suy ra \(\widehat{ABE}=\widehat{DBE}\) hay BE là phân giác góc ABC.
c. Ta thấy tam giác ABC bằng tam giác DBK (cạnh góc vuông - góc nhọn kề)
nên AC = DK.
d. Do tam giác ABE bằng tam giác DBE nên \(\widehat{AEB}=\widehat{DEB}\)
Lại có AH // KD (Cùng vuông góc BC) nên \(\widehat{AME}=\widehat{MED}\) (so le trong)
Vậy \(\widehat{AME}=\widehat{AEM}\)
Vậy tam giác AME cân tại A.
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D co
BE chung
BA=BD
=>ΔBAE=ΔBDE
b: BA=BD
EA=ED
=>BE là trung trực của AD
c: Xét ΔBDM vuông tại D và ΔBAC vuông tại A có
BD=BA
góc B chung
=>ΔBDM=ΔBAC
=>BM=BC
=>ΔBMC cân tại B
Cảm ơn nhiềuu ạ